38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ago1 Interacts with RNA Polymerase II and Binds to the Promoters of Actively Transcribed Genes in Human Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Argonaute proteins are often credited for their cytoplasmic activities in which they function as central mediators of the RNAi platform and microRNA (miRNA)-mediated processes. They also facilitate heterochromatin formation and establishment of repressive epigenetic marks in the nucleus of fission yeast and plants. However, the nuclear functions of Ago proteins in mammalian cells remain elusive. In the present study, we combine ChIP-seq (chromatin immunoprecipitation coupled with massively parallel sequencing) with biochemical assays to show that nuclear Ago1 directly interacts with RNA Polymerase II and is widely associated with chromosomal loci throughout the genome with preferential enrichment in promoters of transcriptionally active genes. Additional analyses show that nuclear Ago1 regulates the expression of Ago1-bound genes that are implicated in oncogenic pathways including cell cycle progression, growth, and survival. Our findings reveal the first landscape of human Ago1-chromosomal interactions, which may play a role in the oncogenic transcriptional program of cancer cells.

          Author Summary

          Argonaute (Ago) proteins are an evolutionarily conserved family of proteins indispensable for a gene regulation mechanism known as RNA interference (RNAi) which is mediated by small RNA including microRNA (miRNA) and small interfering RNA (siRNA) and occurs mainly in the cytoplasm. In mammalian cells, however, the function of Agos in the nucleus is largely unknown despite a few examples in which Agos are shown to be involved in regulating gene transcription and alternative splicing. In this study, by taking a genome-wide approach, we found that human Ago1, but not Ago2, is pervasively associated with gene regulatory sequences known as promoter and interacts with the core component of the gene transcription machinery to exert positive impact on gene expression in cancer cells. Strikingly, the genes bound and regulated by Ago1 are mostly genes that stimulate cell growth and survival, and are known to be involved in the development of cancer. The findings from our study unveil an unexpected role of nuclear Ago1 in regulating gene expression which may be important both in normal cellular processes and in disease such as cancer.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Roles for microRNAs in conferring robustness to biological processes.

          Biological systems use a variety of mechanisms to maintain their functions in the face of environmental and genetic perturbations. Increasing evidence suggests that, among their roles as posttranscriptional repressors of gene expression, microRNAs (miRNAs) help to confer robustness to biological processes by reinforcing transcriptional programs and attenuating aberrant transcripts, and they may in some network contexts help suppress random fluctuations in transcript copy number. These activities have important consequences for normal development and physiology, disease, and evolution. Here, we will discuss examples and principles of miRNAs that contribute to robustness in animal systems. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development.

            MicroRNAs (miRNAs) are endogenous 21-24-nt RNAs that can down-regulate gene expression by pairing to the messages of protein-coding genes to specify mRNA cleavage or repression of productive translation. They act within the RNA-induced silencing complex (RISC), which in animals contains a member of the Argonaute family of proteins. In the present study, we show that Arabidopsis ago1 mutants have increased accumulation of mRNAs known to be targeted for cleavage by miRNAs. In hypomorphic ago1 alleles, this compromised miRNA function occurs without a substantial change in miRNA accumulation, whereas in null alleles it is accompanied by a drop in some of the miRNAs. Therefore, AGO1 acts within the Arabidopsis miRNA pathway, probably within the miRNA-programmed RISC, such that the absence of AGO1 destabilizes some of the miRNAs. We also show that targeting of AGO1 mRNA by miR168 is needed for proper plant development, illustrating the importance of feedback control by this miRNA. Transgenic plants expressing a mutant AGO1 mRNA with decreased complementarity to miR168 overaccumulate AGO1 mRNA and exhibit developmental defects partially overlapping with those of dcl1, hen1, and hyl1 mutants showing a decrease in miRNA accumulation. miRNA targets overaccumulate in miR168-resistant plants, suggesting that a large excess of AGO1 protein interferes with the function of RISC or sequesters miRNAs or other RISC components. Developmental defects induced by a miR168-resistant AGO1 mRNA can be rescued by a compensatory miRNA that is complementary to the mutant AGO1 mRNA, proving the regulatory relationship between miR168 and its target and opening the way for engineering artificial miRNAs in plants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Small dsRNAs induce transcriptional activation in human cells.

              Recent studies have shown that small noncoding RNAs, such as microRNAs and siRNAs, regulate gene expression at multiple levels including chromatin architecture, transcription, RNA editing, RNA stability, and translation. Each form of RNA-dependent regulation has been generally found to silence homologous sequences and collectively called RNAi. To further study the regulatory role of small RNAs at the transcriptional level, we designed and synthesized 21-nt dsRNAs targeting selected promoter regions of human genes E-cadherin, p21(WAF1/CIP1) (p21), and VEGF. Surprisingly, transfection of these dsRNAs into human cell lines caused long-lasting and sequence-specific induction of targeted genes. dsRNA mutation studies reveal that the 5' end of the antisense strand, or "seed" sequence, is critical for activity. Mechanistically, the dsRNA-induced gene activation requires the Argonaute 2 (Ago2) protein and is associated with a loss of lysine-9 methylation on histone 3 at dsRNA-target sites. In conclusion, we have identified several dsRNAs that activate gene expression by targeting noncoding regulatory regions in gene promoters. These findings reveal a more diverse role for small RNA molecules in the regulation of gene expression than previously recognized and identify a potential therapeutic use for dsRNA in targeted gene activation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                September 2013
                September 2013
                26 September 2013
                : 9
                : 9
                : e1003821
                Affiliations
                [1 ]Department of Urology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
                [2 ]Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
                [3 ]Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
                Cincinnati Children's Hospital Medical Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LCL VH HL. Performed the experiments: VH JZ ZQ JW. Analyzed the data: VH LCL. Contributed reagents/materials/analysis tools: ZQ RFP JY. Wrote the paper: VH RFP HL LCL.

                [¤]

                Current address: Genentech Inc., South San Francisco, California, United States of America.

                Article
                PGENETICS-D-13-00631
                10.1371/journal.pgen.1003821
                3784563
                24086155
                4ae8878e-5fca-4792-8f1f-207f36192664
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 March 2013
                : 24 July 2013
                Page count
                Pages: 16
                Funding
                This work was supported by grants from the National Institutes of Health (1R01GM090293-0109 to LCL and HL, P50 GM081879 and GM070808 to HL), Department of Defense (DOD) (W81XWH-08-1-0260 to LCL) and California Institute for Regenerative Medicine (RL1-00660-1 to LCL). VH was supported by a DOD Prostate Cancer Postdoctoral Training Award (W81XWH-10-1-0505). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article