5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeted methods for quantitative analysis of protein glycosylation

      1 , 2 , 1
      PROTEOMICS - Clinical Applications
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Intracellular functions of N-linked glycans.

          N-linked oligosaccharides arise when blocks of 14 sugars are added cotranslationally to newly synthesized polypeptides in the endoplasmic reticulum (ER). These glycans are then subjected to extensive modification as the glycoproteins mature and move through the ER via the Golgi complex to their final destinations inside and outside the cell. In the ER and in the early secretory pathway, where the repertoire of oligosaccharide structures is still rather small, the glycans play a pivotal role in protein folding, oligomerization, quality control, sorting, and transport. They are used as universal "tags" that allow specific lectins and modifying enzymes to establish order among the diversity of maturing glycoproteins. In the Golgi complex, the glycans acquire more complex structures and a new set of functions. The division of synthesis and processing between the ER and the Golgi complex represents an evolutionary adaptation that allows efficient exploitation of the potential of oligosaccharides.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry.

            Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated. Singly charged anthracene anions transfer an electron to multiply protonated peptides in a radio frequency quadrupole linear ion trap (QLT) and induce fragmentation of the peptide backbone along pathways that are analogous to those observed in electron capture dissociation. Modifications to the QLT that enable this ion/ion chemistry are presented, and automated acquisition of high-quality, single-scan electron transfer dissociation MS/MS spectra of phosphopeptides separated by nanoflow HPLC is described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family.

              Glycosylation of proteins is an essential process in all eukaryotes and a great diversity in types of protein glycosylation exists in animals, plants and microorganisms. Mucin-type O-glycosylation, consisting of glycans attached via O-linked N-acetylgalactosamine (GalNAc) to serine and threonine residues, is one of the most abundant forms of protein glycosylation in animals. Although most protein glycosylation is controlled by one or two genes encoding the enzymes responsible for the initiation of glycosylation, i.e. the step where the first glycan is attached to the relevant amino acid residue in the protein, mucin-type O-glycosylation is controlled by a large family of up to 20 homologous genes encoding UDP-GalNAc:polypeptide GalNAc-transferases (GalNAc-Ts) (EC 2.4.1.41). Therefore, mucin-type O-glycosylation has the greatest potential for differential regulation in cells and tissues. The GalNAc-T family is the largest glycosyltransferase enzyme family covering a single known glycosidic linkage and it is highly conserved throughout animal evolution, although absent in bacteria, yeast and plants. Emerging studies have shown that the large number of genes (GALNTs) in the GalNAc-T family do not provide full functional redundancy and single GalNAc-T genes have been shown to be important in both animals and human. Here, we present an overview of the GalNAc-T gene family in animals and propose a classification of the genes into subfamilies, which appear to be conserved in evolution structurally as well as functionally.
                Bookmark

                Author and article information

                Journal
                PROTEOMICS - Clinical Applications
                Prot. Clin. Appl.
                Wiley
                18628346
                February 2015
                February 2015
                January 19 2015
                : 9
                : 1-2
                : 17-32
                Affiliations
                [1 ]Department of Oncology; Lombardi Comprehensive Cancer Center; Washington DC USA
                [2 ]Department of Biochemistry and Molecular and Cellular Biology; Georgetown University; Washington DC USA
                Article
                10.1002/prca.201400152
                25522218
                4af9caac-524c-4b14-920d-8175fd2cbdbb
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article