5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      OGT-Mediated KEAP1 Glycosylation Accelerates NRF2 Degradation Leading to High Phosphate-Induced Vascular Calcification in Chronic Kidney Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unraveling the complex regulatory pathways that mediate the effects of phosphate on vascular smooth muscle cells (VSMCs) may provide novel targets and therapies to limit the destructive effects of vascular calcification (VC) in patients with chronic kidney disease (CKD). Our previous studies have highlighted several signaling networks associated with VSMC autophagy, but the underlying mechanisms remain poorly understood. Thereafter, the current study was performed to characterize the functional relevance of O-linked N-acetylglucosamine (GlcNAc) transferase (OGT) in high phosphate-induced VC in CKD settings. We generated VC models in 5/6 nephrectomized rats in vivo and VSMC calcification models in vitro. Artificial modulation of OGT (knockdown and overexpression) was performed to explore the role of OGT in VSMC autophagy and VC in thoracic aorta, and in vivo experiments were used to substantiate in vitro findings. Mechanistically, co-immunoprecipitation (Co-IP) assay was performed to examine interaction between OGT and kelch like ECH associated protein 1 (KEAP1), and in vivo ubiquitination assay was performed to examine ubiquitination extent of nuclear factor erythroid 2-related factor 2 (NRF2). OGT was highly expressed in high phosphate-induced 5/6 nephrectomized rats and VSMCs. OGT silencing was shown to suppress high phosphate-induced calcification of VSMCs. OGT enhances KEAP1 glycosylation and thereby results in degradation and ubiquitination of NRF2, concurrently inhibiting VSMC autophagy to promote VSMC calcification in 5/6 nephrectomized rats. OGT inhibits VSMC autophagy through the KEAP1/NRF2 axis and thus accelerates high phosphate-induced VC in CKD.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Protein O-GlcNAcylation: emerging mechanisms and functions

          Many cellular proteins are reversibly modified by O-linked N-acetylglucosamine (O-GlcNAc) moieties on Ser and Thr residues. Studies on the mechanisms and functions of O-GlcNAcylation and its links to metabolism reveal the importance of this modification in the maintenance of cellular and organismal homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular calcification: the killer of patients with chronic kidney disease.

            Cardiovascular complications are the leading cause of death in patients with chronic kidney disease (CKD). Vascular calcification is a common complication in CKD, and investigators have demonstrated that the extent and histoanatomic type of vascular calcification are predictors of subsequent vascular mortality. Although research efforts in the past decade have greatly improved our knowledge of the multiple factors and mechanisms involved in vascular calcification in patients with kidney disease, many questions remain unanswered. No longer can we accept the concept that vascular calcification in CKD is a passive process resulting from an elevated calcium-phosphate product. Rather, as a result of the metabolic insults of diabetes, dyslipidemia, oxidative stress, uremia, and hyperphosphatemia, "osteoblast-like" cells form in the vessel wall. These mineralizing cells as well as the recruitment of undifferentiated progenitors to the osteochondrocyte lineage play a critical role in the calcification process. Important transcription factors such as Msx 2, osterix, and RUNX2 are crucial in the programming of osteogenesis. Thus, the simultaneous increase in arterial osteochondrocytic programs and reduction in active cellular defense mechanisms creates the "perfect storm" of vascular calcification seen in ESRD. Innovative clinical studies addressing the combined use of inhibitors that work on vascular calcification through distinct molecular mechanisms, such as fetuin-A, osteopontin, and bone morphogenic protein 7, among others, will be necessary to reduce significantly the accrual of vascular calcifications and cardiovascular mortality in kidney disease. In addition, the roles of oxidative stress and inflammation on the fate of smooth muscle vascular cells and their function deserve further translational investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.

              Although inhibitors of the renin-angiotensin-aldosterone system can slow the progression of diabetic kidney disease, the residual risk is high. Whether nuclear 1 factor (erythroid-derived 2)-related factor 2 activators further reduce this risk is unknown. We randomly assigned 2185 patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (estimated glomerular filtration rate [GFR], 15 to <30 ml per minute per 1.73 m(2) of body-surface area) to bardoxolone methyl, at a daily dose of 20 mg, or placebo. The primary composite outcome was end-stage renal disease (ESRD) or death from cardiovascular causes. The sponsor and the steering committee terminated the trial on the recommendation of the independent data and safety monitoring committee; the median follow-up was 9 months. A total of 69 of 1088 patients (6%) randomly assigned to bardoxolone methyl and 69 of 1097 (6%) randomly assigned to placebo had a primary composite outcome (hazard ratio in the bardoxolone methyl group vs. the placebo group, 0.98; 95% confidence interval [CI], 0.70 to 1.37; P=0.92). In the bardoxolone methyl group, ESRD developed in 43 patients, and 27 patients died from cardiovascular causes; in the placebo group, ESRD developed in 51 patients, and 19 patients died from cardiovascular causes. A total of 96 patients in the bardoxolone methyl group were hospitalized for heart failure or died from heart failure, as compared with 55 in the placebo group (hazard ratio, 1.83; 95% CI, 1.32 to 2.55; P<0.001). Estimated GFR, blood pressure, and the urinary albumin-to-creatinine ratio increased significantly and body weight decreased significantly in the bardoxolone methyl group, as compared with the placebo group. Among patients with type 2 diabetes mellitus and stage 4 chronic kidney disease, bardoxolone methyl did not reduce the risk of ESRD or death from cardiovascular causes. A higher rate of cardiovascular events with bardoxolone methyl than with placebo prompted termination of the trial. (Funded by Reata Pharmaceuticals; BEACON ClinicalTrials.gov number, NCT01351675.).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                26 October 2020
                2020
                : 11
                : 1092
                Affiliations
                Department of Nephrology, The First Hospital of China Medical University , Shenyang, China
                Author notes

                Edited by: Lacolley Patrick, Institut National de la Santé et de la Recherche Médicale (INSERM), France

                Reviewed by: Mario Kassmann, Charité – Universitätsmedizin Berlin, Germany; Dmitry Tsvetkov, University of Tübingen, Germany

                *Correspondence: Li Yao, liyao_cmu@ 123456163.com

                These authors have contributed equally to this work

                This article was submitted to Vascular Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2020.01092
                7649800
                33192538
                4b06eb56-041a-4012-b3ff-e60e32f257ab
                Copyright © 2020 Xu, Du, Sheng, Li, Qiu, Tian and Yao.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 January 2020
                : 07 August 2020
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 41, Pages: 13, Words: 8896
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81770766
                Funded by: Provincial Natural Science Foundation of Liaoning
                Award ID: 20170540999
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                o-linked n-acetylglucosamine transferase,kelch like ech associated protein 1,nuclear factor erythroid 2-related factor 2,autophagy,high phosphorus,vascular smooth muscle cell,vascular calcification,chronic kidney disease

                Comments

                Comment on this article