104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anti-PD-1-based immunotherapy has had a major impact on cancer treatment but has only benefited a subset of patients. Among the variables that could contribute to interpatient heterogeneity is differential composition of the patients' microbiome, which has been shown to affect antitumor immunity and immunotherapy efficacy in preclinical mouse models. We analyzed baseline stool samples from metastatic melanoma patients before immunotherapy treatment, through an integration of 16S ribosomal RNA gene sequencing, metagenomic shotgun sequencing, and quantitative polymerase chain reaction for selected bacteria. A significant association was observed between commensal microbial composition and clinical response. Bacterial species more abundant in responders included Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium. Reconstitution of germ-free mice with fecal material from responding patients could lead to improved tumor control, augmented T cell responses, and greater efficacy of anti-PD-L1 therapy. Our results suggest that the commensal microbiome may have a mechanistic impact on antitumor immunity in human cancer patients.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample.

          The ongoing revolution in high-throughput sequencing continues to democratize the ability of small groups of investigators to map the microbial component of the biosphere. In particular, the coevolution of new sequencing platforms and new software tools allows data acquisition and analysis on an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the Illumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known "mock communities" at a depth averaging 3.1 million reads per sample. We demonstrate excellent consistency in taxonomic recovery and recapture diversity patterns that were previously reported on the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in environmental samples and the split between host-associated and free-living communities). We also demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships among samples that we observe with the full dataset. The results thus open up the possibility of conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial communities at an unprecedented spatial and temporal resolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA sequencing of a cytogenetically normal acute myeloid leukemia genome

            Lay Summary Acute myeloid leukemia is a highly malignant hematopoietic tumor that affects about 13,000 adults yearly in the United States. The treatment of this disease has changed little in the past two decades, since most of the genetic events that initiate the disease remain undiscovered. Whole genome sequencing is now possible at a reasonable cost and timeframe to utilize this approach for unbiased discovery of tumor-specific somatic mutations that alter the protein-coding genes. Here we show the results obtained by sequencing a typical acute myeloid leukemia genome and its matched normal counterpart, obtained from the patient’s skin. We discovered 10 genes with acquired mutations; two were previously described mutations thought to contribute to tumor progression, and 8 were novel mutations present in virtually all tumor cells at presentation and relapse, whose function is not yet known. Our study establishes whole genome sequencing as an unbiased method for discovering initiating mutations in cancer genomes, and for identifying novel genes that may respond to targeted therapies. We used massively parallel sequencing technology to sequence the genomic DNA of tumor and normal skin cells obtained from a patient with a typical presentation of FAB M1 Acute Myeloid Leukemia (AML) with normal cytogenetics. 32.7-fold ‘haploid’ coverage (98 billion bases) was obtained for the tumor genome, and 13.9-fold coverage (41.8 billion bases) was obtained for the normal sample. Of 2,647,695 well-supported Single Nucleotide Variants (SNVs) found in the tumor genome, 2,588,486 (97.7%) also were detected in the patient’s skin genome, limiting the number of variants that required further study. For the purposes of this initial study, we restricted our downstream analysis to the coding sequences of annotated genes: we found only eight heterozygous, non-synonymous somatic SNVs in the entire genome. All were novel, including mutations in protocadherin/cadherin family members (CDH24 and PCLKC), G-protein coupled receptors (GPR123 and EBI2), a protein phosphatase (PTPRT), a potential guanine nucleotide exchange factor (KNDC1), a peptide/drug transporter (SLC15A1), and a glutamate receptor gene (GRINL1B). We also detected previously described, recurrent somatic insertions in the FLT3 and NPM1 genes. Based on deep readcount data, we determined that all of these mutations (except FLT3) were present in nearly all tumor cells at presentation, and again at relapse 11 months later, suggesting that the patient had a single dominant clone containing all of the mutations. These results demonstrate the power of whole genome sequencing to discover novel cancer-associated mutations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mining the Human Gut Microbiota for Immunomodulatory Organisms.

              Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 04 2018
                January 05 2018
                : 359
                : 6371
                : 104-108
                Article
                10.1126/science.aao3290
                6707353
                29302014
                4b115019-9456-448e-af8b-404f92828e02
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article