46
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fatty Acid Oxidation Is Essential for Egg Production by the Parasitic Flatworm Schistosoma mansoni

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes.

          Author Summary

          Schistosomes are parasitic worms that are the cause of the Neglected Tropical Disease schistosomiasis. Female schistosomes mated with males produce eggs, which either pass out of the host's body for transmission of the infection, or become trapped in host tissues, where they induce inflammation that contributes to disease symptoms. It has been assumed that egg production is a bioenergetically-demanding process fuelled by glucose metabolism. However, we have discovered that egg production is blocked by inhibition of fatty acid oxidation (FAO), the process through which FA are utilized within mitochondria to fuel the tricarboxylic acid cycle and thereby produce substrates for ATP synthesis through oxidative phosphorylation. Consistent with a role for FAO in egg production, fecund females have extensive fat stores, in the form of lipid droplets, whereas virgin adult females have little or no fat reserves. Moreover, fecund females placed into tissue culture exhaust their fat reserves and cease to be able to produce eggs. Since schistosomes cannot produce their own FA, our data point to the acquisition of FA from the host as a key process necessary for egg production. Our findings point to the importance of regulated lipid stores and FAO for egg production by schistosomes.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Cell death and tissue remodeling in planarian regeneration.

          Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation-an initial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex.

            CPT1a (carnitine palmitoyltransferase 1a) in the liver mitochondrial outer membrane (MOM) catalyzes the primary regulated step in overall mitochondrial fatty acid oxidation. It has been suggested that the fundamental unit of CPT1a exists as a trimer, which, under native conditions, could form a dimer of the trimers, creating a hexamer channel for acylcarnitine translocation. To examine the state of CPT1a in the MOM, we employed a combined approach of sizing by mass and isolation using an immunological method. Blue native electrophoresis followed by detection with immunoblotting and mass spectrometry identified large molecular mass complexes that contained not only CPT1a but also long chain acyl-CoA synthetase (ACSL) and the voltage-dependent anion channel (VDAC). Immunoprecipitation with antisera against the proteins revealed a strong interaction between the three proteins. Immobilized CPT1a-specific antibodies immunocaptured not only CPT1a but also ACSL and VDAC, further strengthening findings with blue native electrophoresis and immunoprecipitation. This study shows strong protein-protein interaction between CPT1a, ACSL, and VDAC. We propose that this complex transfers activated fatty acids through the MOM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Schistosome male-female interaction: induction of germ-cell differentiation.

              Male and female schistosomes are permanently paired while they live in the bloodstream of their vertebrate hosts. Female schistosomes produce eggs only when they are in intimate association with a male. Here, I combine classical cytological knowledge about the cellular processes in the female that are affected by the male with recent molecular results that are beginning to allow speculation about the signalling events involved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2012
                October 2012
                25 October 2012
                : 8
                : 10
                : e1002996
                Affiliations
                [1 ]Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [2 ]Trudeau Institute, Saranac Lake, New York, United States of America
                [3 ]Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
                Rush University Medical Center, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SC-CH EA BE EJP. Performed the experiments: SC-CH TCF EJP. Analyzed the data: SC-CH EA BE ELP JBL EJP. Wrote the paper: SC-CH EJP.

                Article
                PPATHOGENS-D-12-00999
                10.1371/journal.ppat.1002996
                3486914
                23133378
                4b1dee54-4a01-4d8e-bf7a-ff22e8182a4d
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 April 2012
                : 13 September 2012
                Page count
                Pages: 7
                Funding
                The work was supported by NIH-NIAID ( http://www.niaid.nih.gov)grants AI075266 to EJP and AI082548 to JBL and EJP. Schistosome life stages were provided by BRI through NIH-NIAID contract No. HHSN272201000005I. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Microbiology
                Host-Pathogen Interaction
                Parasitology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article