9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Across diverse taxa, sublethal exposure to abiotic stressors early in life can lead to benefits such as increased stress tolerance upon repeat exposure. This phenomenon, known as hormetic priming, is largely unexplored in early life stages of marine invertebrates, which are increasingly threatened by anthropogenic climate change. To investigate this phenomenon, larvae of the sea anemone and model marine invertebrate Nematostella vectensis were exposed to control (18 °C) or elevated (24 °C, 30 °C, 35 °C, or 39 °C) temperatures for 1 h at 3 days post-fertilization (DPF), followed by return to control temperatures (18 °C). The animals were then assessed for growth, development, metabolic rates, and heat tolerance at 4, 7, and 11 DPF. Priming at intermediately elevated temperatures (24 °C, 30 °C, or 35 °C) augmented growth and development compared to controls or priming at 39 °C. Indeed, priming at 39 °C hampered developmental progression, with around 40% of larvae still in the planula stage at 11 DPF, in contrast to 0% for all other groups. Total protein content, a proxy for biomass, and respiration rates were not significantly affected by priming, suggesting metabolic resilience. Heat tolerance was quantified with acute heat stress exposures, and was significantly higher for animals primed at intermediate temperatures (24 °C, 30 °C, or 35 °C) compared to controls or those primed at 39 °C at all time points. To investigate a possible molecular mechanism for the observed changes in heat tolerance, the expression of heat shock protein 70 (HSP70) was quantified at 11 DPF. Expression of HSP70 significantly increased with increasing priming temperature, with the presence of a doublet band for larvae primed at 39 °C, suggesting persistent negative effects of priming on protein homeostasis. Interestingly, primed larvae in a second cohort cultured to 6 weeks post-fertilization continued to display hormetic growth responses, whereas benefits for heat tolerance were lost; in contrast, negative effects of short-term exposure to extreme heat stress (39 °C) persisted. These results demonstrate that some dose-dependent effects of priming waned over time while others persisted, resulting in heterogeneity in organismal performance across ontogeny following priming. Overall, these findings suggest that heat priming may augment the climate resilience of marine invertebrate early life stages via the modulation of key developmental and physiological phenotypes, while also affirming the need to limit further anthropogenic ocean warming.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fitting Linear Mixed-Effects Models Usinglme4

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology.

              Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                5 December 2023
                2023
                : 11
                : e16574
                Affiliations
                Department of Biology, University of Pennsylvania , Philadelphia, Pennsylvania, United States of America
                Author information
                http://orcid.org/0000-0002-2288-6389
                http://orcid.org/0009-0001-2290-7258
                http://orcid.org/0009-0003-6660-2848
                http://orcid.org/0000-0001-7371-4870
                Article
                16574
                10.7717/peerj.16574
                10704996
                38077426
                4b2163d2-955e-436e-939c-364ae958214a
                © 2023 Glass et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 12 September 2023
                : 13 November 2023
                Funding
                Funded by: National Institutes of Health (NIH) Predoctoral
                Award ID: T32 HD083185
                Funded by: University of Pennsylvania
                Funded by: American Fisheries Society Steven Berkeley Marine Conservation Fellowship
                Funded by: National Science Foundation (NSF)
                Award ID: 1923743
                Funded by: Foundation New Investigator Award
                Award ID: KA2021-114797
                This work was supported by the National Institutes of Health (NIH) Predoctoral T32 HD083185 to Benjamin H. Glass, funding from the University of Pennsylvania to Benjamin H. Glass, the American Fisheries Society Steven Berkeley Marine Conservation Fellowship to Benjamin H. Glass, the National Science Foundation (NSF) award 1923743 to Katie L. Barott, and the Charles E. Kaufman Foundation New Investigator Award KA2021-114797 to Katie L. Barott. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Developmental Biology
                Ecology
                Marine Biology
                Climate Change Biology
                Biological Oceanography

                nematostella vectensis,hormetic priming,environmental memory,ocean warming,climate change

                Comments

                Comment on this article