1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of nucleolus localization signal of betanodavirus GGNNV protein alpha.

      Biology
      Amino Acid Sequence, Animals, Base Sequence, Bass, COS Cells, Cell Nucleolus, metabolism, virology, Cercopithecus aethiops, DNA, Viral, genetics, Green Fluorescent Proteins, Luminescent Proteins, Molecular Sequence Data, Nodaviridae, Nuclear Localization Signals, chemistry, Protein Structure, Tertiary, Recombinant Fusion Proteins, Sequence Deletion, Transfection, Viral Proteins

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Betanodavirus greasy grouper (Epinephelus tauvina) nervous necrosis viruses (GGNNV) protein alpha, a virus capsid protein, was detected in both nucleolus and cytoplasm of infected cells of Asian sea bass (SB) and transfected cells of SB and Cos-7 with pcDNA3.1/RNA2. To study its subcellular localization, ORF of protein alpha with 338 aa was fused with enhanced green fluorescent protein (EGFP) gene and was detected in transfected cells in the absence of other viral proteins. In both SB and Cos-7 cells, protein alpha was found to localize EGFP to the nucleolus and cytoplasm. Deletion mutants of protein alpha indicated that N-terminal 43 amino acid residues were required to import EGFP-alpha protein into the nucleolus. Further deletions within the 43 amino acid backbone, EGFP/33aa(1-33) and EGFP/30aa(14-43), localized to the nucleolus, suggesting that the 20 amino acids from 14 to 33 of protein alpha were the domain of nucleolus localization. To further determine the nucleolus targeting sequence, deletion mutations within the 20 amino acids of protein alpha were constructed. It was found that the deletion of (23)RRR(25), (29)RRR(31), or (23)RRRANNRRR(31) prevented the accumulation of EGFP fusion proteins into the nucleolus, demonstrating that (23)RRRANNRRR(31) contain the signal required for nucleolar localization. A similar distribution pattern of localization of protein alpha and its deletion mutants in SB and Cos-7 cells suggested that N-terminal residues of protein alpha (23)RRRANNRRR(31) constitute a nucleolus localization signal that functions in both fish and mammalian cells.

          Related collections

          Author and article information

          Comments

          Comment on this article