+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes’ activities with the produced flavour compounds


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          During alcoholic fermentation, Saccharomyces cerevisiae synthesizes more than 400 different compounds with higher alcohols, acetate esters of higher alcohols and ethyl esters of medium-chain fatty acids being the most important products of its metabolism, determining the particular flavour profile of each wine. The concentration of the metabolites produced depends to a large extent on the strain used. The use of indigenous strains as starting cultures can lead to the production of wines with excellent organoleptic characteristics and distinct local character, superior in quality when compared to their commercial counterparts. However, the relationship of these wild-type genotypes, linked to specific terroirs, with the biosynthetic profiles of flavour metabolites is not completely clarified and understood. To this end, qRT-PCR was employed to examine, for the first time on the transcriptional level, the performance of an indigenous Saccharomyces cerevisiae strain (Z622) in its natural environment (Debina grape must). The expression of genes implicated in higher alcohols and esters formation was correlated with the concentrations of these compounds in the produced wine. Furthermore, by applying the same fermentation conditions, we examined the same parameters in a commercial strain (VL1) and compared its performance with the one of strain Z622.


          Strain Z622, exhibited lower concentrations of 2-methylbutanol, 3-methylbutanol and 2-phenyl ethanol, than VL1 correlating with the elevated expression levels of transaminase and decarboxylase genes. Furthermore, the significantly high induction of ADH3 throughout fermentation of Z622 probably explains the larger population numbers reached by Z622 and reflects the better adaptation of the strain to its natural environment. Regarding acetate ester biosynthesis, Z622 produced higher concentrations of total acetate esters, compared with VL1, a fact that is in full agreement with the elevated expression levels of both ATF1 and ATF2 in strain Z622.


          This study provides evidence on the transcriptional level that indigenous yeast Z622 is better adapted to its natural environment able to produce wines with desirable characteristics, i.e. lower concentrations of higher alcohol and higher ester, verifying its potential as a valuable starter for the local wine-industry.

          Electronic supplementary material

          The online version of this article (10.1186/s40709-019-0096-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking.

          Yeasts are predominant in the ancient and complex process of winemaking. In spontaneous fermentations, there is a progressive growth pattern of indigenous yeasts, with the final stages invariably being dominated by the alcohol-tolerant strains of Saccharomyces cerevisiae. This species is universally known as the 'wine yeast' and is widely preferred for initiating wine fermentations. The primary role of wine yeast is to catalyze the rapid, complete and efficient conversion of grape sugars to ethanol, carbon dioxide and other minor, but important, metabolites without the development of off-flavours. However, due to the demanding nature of modern winemaking practices and sophisticated wine markets, there is an ever-growing quest for specialized wine yeast strains possessing a wide range of optimized, improved or novel oenological properties. This review highlights the wealth of untapped indigenous yeasts with oenological potential, the complexity of wine yeasts' genetic features and the genetic techniques often used in strain development. The current status of genetically improved wine yeasts and potential targets for further strain development are outlined. In light of the limited knowledge of industrial wine yeasts' complex genomes and the daunting challenges to comply with strict statutory regulations and consumer demands regarding the future use of genetically modified strains, this review cautions against unrealistic expectations over the short term. However, the staggering potential advantages of improved wine yeasts to both the winemaker and consumer in the third millennium are pointed out. Copyright 2000 John Wiley & Sons, Ltd.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae

            Background Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae. Results From public microarray datasets, we selected potential reference genes whose expression remained apparently invariable during long-term growth on glucose. Using the algorithm geNorm, ALG9, TAF10, TFC1 and UBC6 turned out to be genes whose expression remained stable, independent of the growth conditions and the strain backgrounds tested in this study. We then showed that the geometric averaging of any subset of three genes among the six most stable genes resulted in very similar normalized data, which contrasted with inconsistent results among various biological samples when the normalization was performed with ACT1. Normalization with multiple selected genes was therefore applied to transcriptional analysis of genes involved in glycogen metabolism. We determined an induction ratio of 100-fold for GPH1 and 20-fold for GSY2 between the exponential phase and the diauxic shift on glucose. There was no induction of these two genes at this transition phase on galactose, although in both cases, the kinetics of glycogen accumulation was similar. In contrast, SGA1 expression was independent of the carbon source and increased by 3-fold in stationary phase. Conclusion In this work, we provided a set of genes that are suitable reference genes for quantitative gene expression analysis by real-time RT-PCR in yeast biological samples covering a large panel of physiological states. In contrast, we invalidated and discourage the use of ACT1 as well as other commonly used reference genes (PDA1, TDH3, RDN18, etc) as internal controls for quantitative gene expression analysis in yeast.
              • Record: found
              • Abstract: found
              • Article: not found

              Function of yeast species and strains in wine flavour.

              The diversity and the composition of the yeast micropopulation significantly contribute to the sensory characteristics of wine. The growth of each wine yeast species is characterized by a specific metabolic activity, which determines concentrations of flavour compounds in the final wine. However, it must be underlined that, within each species, significant strain variability has been recorded. The wide use of starter cultures, mainly applied to reduce the risk of spoilage and unpredictable changes of wine flavour, can ensure a balanced wine flavour, but it may also cause a loss of characteristic aroma and flavour determinants. Thus, the beneficial contribution from the yeast increases when starter cultures for winemaking are selected on the basis of scientifically verified characteristics and are able to complement and optimise grape quality and individual characteristics. Here we report the characterization of a large number of strains of different wine yeast species, isolated from spontaneous wine fermentations and included in the culture collection of the Basilicata University.

                Author and article information

                +302651007393 , me00762@cc.uoi.gr
                +302651007331 , ehatzilu@cc.uoi.gr
                J Biol Res (Thessalon)
                J Biol Res (Thessalon)
                Journal of Biological Research
                BioMed Central (London )
                5 August 2019
                5 August 2019
                December 2019
                : 26
                : 5
                [1 ]ISNI 0000 0001 2108 7481, GRID grid.9594.1, Laboratory of Molecular Biology, Department of Biological Applications & Technologies, , University of Ioannina, ; 451 10 Ioannina, Greece
                [2 ]ISNI 0000 0001 2108 7481, GRID grid.9594.1, Laboratory of Biochemistry, Department of Chemistry, , University of Ioannina, ; 451 10 Ioannina, Greece
                [3 ]Department of Soil Science of Athens, Institute of Soil and Water Resources, Hellenic Agricultural Organization-DEMETER, 141 23 Athens, Greece
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                : 18 April 2019
                : 6 July 2019
                Custom metadata
                © The Author(s) 2019

                indigenous saccharomyces cerevisiae,higher alcohols biosynthesis,ester biosynthesis,gene expression,qrt-pcr


                Comment on this article