47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Association between Branch Point Properties and Alternative Splicing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The branch point (BP) is one of the three obligatory signals required for pre-mRNA splicing. In mammals, the degeneracy of the motif combined with the lack of a large set of experimentally verified BPs complicates the task of modeling it in silico, and therefore of predicting the location of natural BPs. Consequently, BPs have been disregarded in a considerable fraction of the genome-wide studies on the regulation of splicing in mammals. We present a new computational approach for mammalian BP prediction. Using sequence conservation and positional bias we obtained a set of motifs with good agreement with U2 snRNA binding stability. Using a Support Vector Machine algorithm, we created a model complemented with polypyrimidine tract features, which considerably improves the prediction accuracy over previously published methods. Applying our algorithm to human introns, we show that BP position is highly dependent on the presence of AG dinucleotides in the 3′ end of introns, with distance to the 3′ splice site and BP strength strongly correlating with alternative splicing. Furthermore, experimental BP mapping for five exons preceded by long AG-dinucleotide exclusion zones revealed that, for a given intron, more than one BP can be chosen throughout the course of splicing. Finally, the comparison between exons of different evolutionary ages and pseudo exons suggests a key role of the BP in the pathway of exon creation in human. Our computational and experimental analyses suggest that BP recognition is more flexible than previously assumed, and it appears highly dependent on the presence of downstream polypyrimidine tracts. The reported association between BP features and the splicing outcome suggests that this, so far disregarded but yet crucial, element buries information that can complement current acceptor site models.

          Author Summary

          From transcription to translation, the events underlying protein production from DNA sequence are paramount to all aspects of cellular function. Pre-mRNAs in eukaryotes undergo several processing steps prior to their export to the cytoplasm. Among these, splicing – the process of intron removal and exon ligation – has been shown to play a central role in the regulation of gene expression. It has been estimated that more than half of the disease-causing mutations in humans do so by interfering with splicing. The difficulty in describing these disease mechanisms often lies in the low accuracy of the methods for prediction of functional splicing signals in the pre-mRNA. This is especially the case of the branch point, mainly due to its high sequence variability. We have developed a methodology for mammalian branch point prediction based on a machine-learning algorithm, which shows improved accuracy over previous published methods. Moreover, using a combination of experimental and bioinformatics approaches, we uncovered important positional properties of the branch point and shed new light on how some of its features may contribute to the final splicing outcome. These findings might prove useful for a better understanding of how splicing-associated mutations can lead to disease.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          HITS-CLIP yields genome-wide insights into brain alternative RNA processing

          Summary Protein-RNA interactions play critical roles in all aspects of gene expression. Here we develop a genome-wide means of mapping protein-RNA binding sites in vivo, by high throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP). HITS-CLIP analysis of the neuron-specific splicing factor Nova2 revealed extremely reproducible RNA binding maps in multiple mouse brains. These maps provide genome-wide in vivo biochemical footprints confirming the previous prediction that the position of Nova binding determines the outcome of alternative splicing; moreover, they are sufficiently powerful to predict Nova action de novo. HITS-CLIP revealed a large number of Nova-RNA interactions in 3′ UTRs, leading to the discovery that Nova regulates alternative polyadenylation in the brain. HITS-CLIP, therefore, provides a robust, unbiased means to identify functional protein-RNA interactions in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Splicing regulation: from a parts list of regulatory elements to an integrated splicing code.

            Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or "code" for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Predictive identification of exonic splicing enhancers in human genes.

              Specific short oligonucleotide sequences that enhance pre-mRNA splicing when present in exons, termed exonic splicing enhancers (ESEs), play important roles in constitutive and alternative splicing. A computational method, RESCUE-ESE, was developed that predicts which sequences have ESE activity by statistical analysis of exon-intron and splice site composition. When large data sets of human gene sequences were used, this method identified 10 predicted ESE motifs. Representatives of all 10 motifs were found to display enhancer activity in vivo, whereas point mutants of these sequences exhibited sharply reduced activity. The motifs identified enable prediction of the splicing phenotypes of exonic mutations in human genes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                November 2010
                November 2010
                24 November 2010
                : 6
                : 11
                : e1001016
                Affiliations
                [1 ]Computational Genomics, Universitat Pompeu Fabra, Barcelona, Spain
                [2 ]Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, Porto, Portugal
                [3 ]Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
                [4 ]Catalan Institution for Research and Advanced Studies, Barcelona, Spain
                University of British Columbia, Canada
                Author notes

                Conceived and designed the experiments: AC CWJS EE. Performed the experiments: AC MH. Analyzed the data: AC. Contributed reagents/materials/analysis tools: MH. Wrote the paper: AC MH CWJS EE.

                Article
                10-PLCB-RA-2078R3
                10.1371/journal.pcbi.1001016
                2991248
                21124863
                4b449c51-5338-4e53-b3e5-01f735578006
                Corvelo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 April 2010
                : 27 October 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Computational Biology/Alternative Splicing
                Computational Biology/Genomics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article