13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dosimetric comparison of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in total scalp irradiation: a single institutional experience

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Total scalp irradiation (TSI) is a rare but challenging indication. We previously reported that non-coplanar intensity-modulated radiotherapy (IMRT) was superior to coplanar IMRT in organ-at-risk (OAR) protection and target dose distribution. This consecutive treatment planning study compared IMRT with volumetric-modulated arc therapy (VMAT).

          Materials and Methods

          A retrospective treatment plan databank search was performed and 5 patient cases were randomly selected. Cranial imaging was restored from the initial planning computed tomography (CT) and target volumes and OAR were redelineated. For each patients, three treatment plans were calculated (coplanar/non-coplanar IMRT, VMAT; prescribed dose 50 Gy, single dose 2 Gy). Conformity, homogeneity and dose volume histograms were used for plan.

          Results

          VMAT featured the lowest monitor units and the sharpest dose gradient (1.6 Gy/mm). Planning target volume (PTV) coverage and homogeneity was better in VMAT (coverage, 0.95; homogeneity index [HI], 0.118) compared to IMRT (coverage, 0.94; HI, 0.119) but coplanar IMRT produced the most conformal plans (conformity index [CI], 0.43). Minimum PTV dose range was 66.8% –88.4% in coplanar, 77.5%–88.2% in non-coplanar IMRT and 82.8%–90.3% in VMAT. Mean dose to the brain, brain stem, optic system (maximum dose) and lenses were 18.6, 13.2, 9.1, and 5.2 Gy for VMAT, 21.9, 13.4, 14.5, and 6.3 Gy for non-coplanar and 22.8, 16.5, 11.5, and 5.9 Gy for coplanar IMRT. Maximum optic chiasm dose was 7.7, 8.4, and 11.1 Gy (non-coplanar IMRT, VMAT, and coplanar IMRT).

          Conclusion

          Target coverage, homogeneity and OAR protection, was slightly superior in VMAT plans which also produced the sharpest dose gradient towards healthy tissue.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note.

          I Paddick (2000)
          A conformity index is a measure of how well the volume of a radiosurgical dose distribution conforms to the size and shape of a target volume. Because the success of radiosurgery is related to the extremely conformal irradiation of the target, an accurate method for describing this parameter is important. Existing conformity ratios and indices used in radiosurgery are reviewed and criticized. It will be demonstrated that previously proposed measurements of conformity can, under certain conditions, give false perfect scores. A new conformity index is derived that gives an objective score of conformity for a treatment plan and gives no false scores. An analysis of five different treatment plans is made using both the existing scoring methods and the new conformity index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extreme sensitivity of adult neurogenesis to low doses of X-irradiation.

            Therapeutic irradiation of the brain is associated with a number of adverse effects, including cognitive impairment. Although the pathogenesis of radiation-induced cognitive injury is unknown, it may involve loss of neural precursor cells from the subgranular zone (SGZ) of the hippocampal dentate gyrus and alterations in new cell production (neurogenesis). Young adult male C57BL mice received whole brain irradiation, and 6-48 h later, hippocampal tissue was assessed using immunohistochemistry for detection of apoptosis and numbers of proliferating cells and immature neurons. Apoptosis peaked 12 h after irradiation, and its extent was dose dependent. Forty-eight h after irradiation, proliferating SGZ cells were reduced by 93-96%; immature neurons were decreased from 40 to 60% in a dose-dependent fashion. To determine whether acute cell sensitivity translated into long-term changes, we quantified neurogenesis 2 months after irradiation with 0, 2, 5, or 10 Gy. Multiple injections of BrdUrd were given to label proliferating cells, and 3 weeks later, confocal microscopy was used to determine the percentage of BrdUrd-labeled cells that showed mature cell phenotypes. The production of new neurons was significantly reduced by X-rays; that change was dose dependent. In contrast, there were no apparent effects on the production of new astrocytes or oligodendrocytes. Measures of activated microglia indicated that changes in neurogenesis were associated with a significant inflammatory response. Given the known effects of radiation on cognitive function and the relationship between hippocampal neurogenesis and associated memory formation, our data suggest that precursor cell radiation response and altered neurogenesis may play a contributory if not causative role in radiation-induced cognitive impairment.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              [The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT)].

              N Hodapp (2012)
                Bookmark

                Author and article information

                Journal
                Radiat Oncol J
                Radiat Oncol J
                ROJ
                Radiation Oncology Journal
                The Korean Society for Radiation Oncology
                2234-1900
                2234-3164
                December 2016
                14 December 2016
                : 34
                : 4
                : 313-321
                Affiliations
                Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
                Author notes
                Correspondence: Christian Ostheimer, MD, Department of Radiation Oncology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany. Tel: +49-345-557-3432, Fax: +49-345-557-4333, E-mail: Christian.Ostheimer@ 123456uk-halle.de
                Article
                roj-2016-01935
                10.3857/roj.2016.01935
                5207369
                27951625
                4b544b60-c2ba-4cb2-a712-046dd567b534
                Copyright © 2016 The Korean Society for Radiation Oncology

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 August 2016
                : 22 September 2016
                : 14 October 2016
                Categories
                Original Article
                Physics Contribution

                Oncology & Radiotherapy
                total scalp irradiation,intensity-modulated radiotherapy,volumetric-modulated arc therapy,angiosarcoma,mycosis fungoides,lymphoma of the scalp,dosimetry

                Comments

                Comment on this article

                scite_

                Similar content91

                Cited by14

                Most referenced authors184