Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      S-Nitrosoglutathione Reverts Dietary Sucrose-Induced Insulin Resistance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The liver is a fundamental organ to ensure whole-body homeostasis, allowing for a proper increase in insulin sensitivity from the fast to the postprandial status. Hepatic regulation of glucose metabolism is crucial and has been shown to be modulated by glutathione (GSH) and nitric oxide (NO). However, knowledge of the metabolic action of GSH and NO in glucose homeostasis remains incomplete. The current study was designed to test the hypothesis that treatment with S-nitrosoglutathione is sufficient to revert insulin resistance induced by a high-sucrose diet. Male Wistar rats were divided in a control or high-sucrose group. Insulin sensitivity was determined: (i) in the fast state; (ii) after a standardized test meal; (iii) after GSH + NO; and after (iv) S-nitrosoglutathione (GSNO) administration. The fasting glucose level was not different between the control and high-sucrose group. In the liver, the high-sucrose model shows increased NO and unchanged GSH levels. In control animals, insulin sensitivity increased after a meal or administration of GSH+NO/GSNO, but this was abrogated by sucrose feeding. GSNO was able to revert insulin resistance induced by sucrose feeding, in a dose-dependent manner, suggesting that they have an insulin-sensitizing effect in vivo. These effects are associated with an increased insulin receptor and Akt phosphorylation in muscle cells. Our findings demonstrate that GSNO promotes insulin sensitivity in a sucrose-induced insulin-resistant animal model and further implicates that this antioxidant molecule may act as a potential pharmacological tool for the treatment of insulin resistance in obesity and type 2 diabetes.

          Related collections

          Most cited references 64

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitric oxide: a physiologic messenger molecule.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrite and nitrate determinations in plasma: a critical evaluation.

              Plasma nitrite and nitrate determinations are increasingly being used in clinical chemistry as markers for the activity of nitric oxide synthase and the production of nitric oxide radicals. However, a systematic evaluation of the determination of nitrite and nitrate in plasma has not been performed. In this study the recovery and stability of nitrite and nitrate in whole blood and in plasma, the relation between nitrite and nitrate concentrations in plasma, and possible sources of artifacts were investigated. The main conclusions are: (a) Recovery of nitrite and nitrate from plasma is near-quantitative (87%) and reproducible; (b) nitrite and nitrate are stable in (frozen) plasma for at least 1 year; (c) nitrite in whole blood is very rapidly (> 95% in 1 h) oxidized to nitrate, and therefore plasma nitrite determination alone is meaningless; (d) the ranges of nitrite and nitrate concentrations in plasma samples of 26 healthy persons are 1.3-13 mumol/L (mean 4.2 mumol/L) and 4.0-45.3 mumol/L (mean 19.7 mumol/L), respectively; (e) plasma nitrite and nitrate concentrations were not correlated (nitrite as % of total nitrite + nitrate varied from 3.9% to 88% in plasma samples); and (f) plasma samples should be deproteinized, and background controls for each sample should be included in the assay, to avoid measuring artifactually high nitrite and nitrate concentrations in plasma.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                15 September 2020
                September 2020
                : 9
                : 9
                Affiliations
                [1 ]CEDOC, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-090 Lisboa, Portugal; ines.lima@ 123456nms.unl.pt (I.S.-L.); ana.fernandes@ 123456neuro.fchampalimaud.org (A.B.F.); rita.patarrao@ 123456nms.unl.pt (R.S.P.)
                [2 ]Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA; ykim2@ 123456bidmc.harvard.edu
                [3 ]IGC—Instituto Gulbenkian de Ciência, 2780-156 Lisbon, Portugal
                [4 ]APDP-Diabetes Portugal, Education and Research Center, 1250-203 Lisbon, Portugal
                [5 ]Department of Medical Sciences, Institute of Biomedicine University of Aveiro, 3810-193 Aveiro, Portugal
                Author notes
                Article
                antioxidants-09-00870
                10.3390/antiox9090870
                7555592
                32942712
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Article

                Comments

                Comment on this article