13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Explicit size distributions of failure cascades redefine systemic risk on finite networks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How big is the risk that a few initial failures of nodes in a network amplify to large cascades that span a substantial share of all nodes? Predicting the final cascade size is critical to ensure the functioning of a system as a whole. Yet, this task is hampered by uncertain and missing information. In infinitely large networks, the average cascade size can often be estimated by approaches building on local tree and mean field approximations. Yet, as we demonstrate, in finite networks, this average does not need to be a likely outcome. Instead, we find broad and even bimodal cascade size distributions. This phenomenon persists for system sizes up to 10 7 and different cascade models, i.e. it is relevant for most real systems. To show this, we derive explicit closed-form solutions for the full probability distribution of the final cascade size. We focus on two topological limit cases, the complete network representing a dense network with a very narrow degree distribution, and the star network representing a sparse network with a inhomogeneous degree distribution. Those topologies are of great interest, as they either minimize or maximize the average cascade size and are common motifs in many real world networks.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple model of global cascades on random networks.

            The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascades-herein called global cascades-that occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Epidemic processes in complex networks

              , , (2015)
              In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
                Bookmark

                Author and article information

                Contributors
                rburkholz@ethz.ch
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 May 2018
                2 May 2018
                2018
                : 8
                : 6878
                Affiliations
                [1 ]ISNI 0000 0001 2156 2780, GRID grid.5801.c, ETH Zurich, Computer Science, ; Zurich, 8092 Switzerland
                [2 ]ISNI 0000 0001 2156 2780, GRID grid.5801.c, ETH Zurich, Computational Physics for Engineering Materials, IfB, ; Zurich, 8093 Switzerland
                [3 ]ISNI 0000 0001 2160 0329, GRID grid.8395.7, Universidade Federal do Ceará, ; Física, Fortaleza Ceará 60451-970 Brazil
                [4 ]ETH Zurich, Management, Technology and Economics, Zurich, 8092 Switzerland
                Author information
                http://orcid.org/0000-0003-1551-6491
                Article
                25211
                10.1038/s41598-018-25211-3
                5932047
                29720624
                4b69ed76-d485-485b-936d-5fef6c1ff955
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 January 2018
                : 16 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article