104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication.

      American journal of respiratory and critical care medicine
      Acute Kidney Injury, diagnosis, urine, Aged, Aged, 80 and over, Biological Markers, Cell Death, Cohort Studies, Critical Illness, Female, Humans, Insulin-Like Growth Factor Binding Proteins, Male, Middle Aged, Predictive Value of Tests, Prospective Studies, Protease Inhibitors, Sensitivity and Specificity, Severity of Illness Index, Time Factors, Tissue Inhibitor of Metalloproteinase-2, United States

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We recently reported two novel biomarkers for acute kidney injury (AKI), tissue inhibitor of metalloproteinases (TIMP)-2 and insulin-like growth factor binding protein 7 (IGFBP7), both related to G1 cell cycle arrest. We now validate a clinical test for urinary [TIMP-2]·[IGFBP7] at a high-sensitivity cutoff greater than 0.3 for AKI risk stratification in a diverse population of critically ill patients. We conducted a prospective multicenter study of 420 critically ill patients. The primary analysis was the ability of urinary [TIMP-2]·[IGFBP7] to predict moderate to severe AKI within 12 hours. AKI was adjudicated by a committee of three independent expert nephrologists who were masked to the results of the test. Urinary TIMP-2 and IGFBP7 were measured using a clinical immunoassay platform. The primary endpoint was reached in 17% of patients. For a single urinary [TIMP-2]·[IGFBP7] test, sensitivity at the prespecified high-sensitivity cutoff of 0.3 (ng/ml)(2)/1,000 was 92% (95% confidence interval [CI], 85-98%) with a negative likelihood ratio of 0.18 (95% CI, 0.06-0.33). Critically ill patients with urinary [TIMP-2]·[IGFBP7] greater than 0.3 had seven times the risk for AKI (95% CI, 4-22) compared with critically ill patients with a test result below 0.3. In a multivariate model including clinical information, urinary [TIMP-2]·[IGFBP7] remained statistically significant and a strong predictor of AKI (area under the curve, 0.70, 95% CI, 0.63-0.76 for clinical variables alone, vs. area under the curve, 0.86, 95% CI, 0.80-0.90 for clinical variables plus [TIMP-2]·[IGFBP7]). Urinary [TIMP-2]·[IGFBP7] greater than 0.3 (ng/ml)(2)/1,000 identifies patients at risk for imminent AKI. Clinical trial registered with www.clinicaltrials.gov (NCT 01573962).

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Acute kidney injury, mortality, length of stay, and costs in hospitalized patients.

          The marginal effects of acute kidney injury on in-hospital mortality, length of stay (LOS), and costs have not been well described. A consecutive sample of 19,982 adults who were admitted to an urban academic medical center, including 9210 who had two or more serum creatinine (SCr) determinations, was evaluated. The presence and degree of acute kidney injury were assessed using absolute and relative increases from baseline to peak SCr concentration during hospitalization. Large increases in SCr concentration were relatively rare (e.g., >or=2.0 mg/dl in 105 [1%] patients), whereas more modest increases in SCr were common (e.g., >or=0.5 mg/dl in 1237 [13%] patients). Modest changes in SCr were significantly associated with mortality, LOS, and costs, even after adjustment for age, gender, admission International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis, severity of illness (diagnosis-related group weight), and chronic kidney disease. For example, an increase in SCr >or=0.5 mg/dl was associated with a 6.5-fold (95% confidence interval 5.0 to 8.5) increase in the odds of death, a 3.5-d increase in LOS, and nearly 7500 dollars in excess hospital costs. Acute kidney injury is associated with significantly increased mortality, LOS, and costs across a broad spectrum of conditions. Moreover, outcomes are related directly to the severity of acute kidney injury, whether characterized by nominal or percentage changes in serum creatinine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure.

            B-type natriuretic peptide is released from the cardiac ventricles in response to increased wall tension. We conducted a prospective study of 1586 patients who came to the emergency department with acute dyspnea and whose B-type natriuretic peptide was measured with a bedside assay. The clinical diagnosis of congestive heart failure was adjudicated by two independent cardiologists, who were blinded to the results of the B-type natriuretic peptide assay. The final diagnosis was dyspnea due to congestive heart failure in 744 patients (47 percent), dyspnea due to noncardiac causes in 72 patients with a history of left ventricular dysfunction (5 percent), and no finding of congestive heart failure in 770 patients (49 percent). B-type natriuretic peptide levels by themselves were more accurate than any historical or physical findings or laboratory values in identifying congestive heart failure as the cause of dyspnea. The diagnostic accuracy of B-type natriuretic peptide at a cutoff of 100 pg per milliliter was 83.4 percent. The negative predictive value of B-type natriuretic peptide at levels of less than 50 pg per milliliter was 96 percent. In multiple logistic-regression analysis, measurements of B-type natriuretic peptide added significant independent predictive power to other clinical variables in models predicting which patients had congestive heart failure. Used in conjunction with other clinical information, rapid measurement of B-type natriuretic peptide is useful in establishing or excluding the diagnosis of congestive heart failure in patients with acute dyspnea. Copyright 2002 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury

              Introduction Acute kidney injury (AKI) can evolve quickly and clinical measures of function often fail to detect AKI at a time when interventions are likely to provide benefit. Identifying early markers of kidney damage has been difficult due to the complex nature of human AKI, in which multiple etiologies exist. The objective of this study was to identify and validate novel biomarkers of AKI. Methods We performed two multicenter observational studies in critically ill patients at risk for AKI - discovery and validation. The top two markers from discovery were validated in a second study (Sapphire) and compared to a number of previously described biomarkers. In the discovery phase, we enrolled 522 adults in three distinct cohorts including patients with sepsis, shock, major surgery, and trauma and examined over 300 markers. In the Sapphire validation study, we enrolled 744 adult subjects with critical illness and without evidence of AKI at enrollment; the final analysis cohort was a heterogeneous sample of 728 critically ill patients. The primary endpoint was moderate to severe AKI (KDIGO stage 2 to 3) within 12 hours of sample collection. Results Moderate to severe AKI occurred in 14% of Sapphire subjects. The two top biomarkers from discovery were validated. Urine insulin-like growth factor-binding protein 7 (IGFBP7) and tissue inhibitor of metalloproteinases-2 (TIMP-2), both inducers of G1 cell cycle arrest, a key mechanism implicated in AKI, together demonstrated an AUC of 0.80 (0.76 and 0.79 alone). Urine [TIMP-2]·[IGFBP7] was significantly superior to all previously described markers of AKI (P 0.72. Furthermore, [TIMP-2]·[IGFBP7] significantly improved risk stratification when added to a nine-variable clinical model when analyzed using Cox proportional hazards model, generalized estimating equation, integrated discrimination improvement or net reclassification improvement. Finally, in sensitivity analyses [TIMP-2]·[IGFBP7] remained significant and superior to all other markers regardless of changes in reference creatinine method. Conclusions Two novel markers for AKI have been identified and validated in independent multicenter cohorts. Both markers are superior to existing markers, provide additional information over clinical variables and add mechanistic insight into AKI. Trial registration ClinicalTrials.gov number NCT01209169.
                Bookmark

                Author and article information

                Comments

                Comment on this article