48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Disturbances in the myocardial extracellular volume fraction (ECV), such as diffuse or focal myocardial fibrosis or edema, are hallmarks of heart disease. Diffuse ECV changes are difficult to assess or quantify with cardiovascular magnetic resonance (CMR) using conventional late gadolinium enhancement (LGE), or pre- or post-contrast T1-mapping alone. ECV measurement circumvents factors that confound T1-weighted images or T1-maps, and has been shown to correlate well with diffuse myocardial fibrosis. The goal of this study was to develop and evaluate an automated method for producing a pixel-wise map of ECV that would be adequately robust for clinical work flow.

          Methods

          ECV maps were automatically generated from T1-maps acquired pre- and post-contrast calibrated by blood hematocrit. The algorithm incorporates correction of respiratory motion that occurs due to insufficient breath-holding and due to misregistration between breath-holds, as well as automated identification of the blood pool. Images were visually scored on a 5-point scale from non-diagnostic (1) to excellent (5).

          Results

          The quality score of ECV maps was 4.23 ± 0.83 (m ± SD), scored for n = 600 maps from 338 patients with 83% either excellent or good. Co-registration of the pre-and post-contrast images improved the image quality for ECV maps in 81% of the cases. ECV of normal myocardium was 25.4 ± 2.5% (m ± SD) using motion correction and co-registration values and was 31.5 ± 8.7% without motion correction and co-registration.

          Conclusions

          Fully automated motion correction and co-registration of breath-holds significantly improve the quality of ECV maps, thus making the generation of ECV-maps feasible for clinical work flow.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology.

          Conventional late gadolinium enhancement (LGE) cardiac magnetic resonance can detect myocardial infarction and some forms of non-ischaemic myocardial fibrosis. However, quantitative imaging of extracellular volume fraction (ECV) may be able to detect subtle abnormalities such as diffuse fibrosis or post-infarct remodelling of remote myocardium. The aims were (1) to measure ECV in myocardial infarction and non-ischaemic myocardial fibrosis, (2) to determine whether ECV varies with age, and (3) to detect sub-clinical abnormalities in 'normal appearing' myocardium remote from regions of infarction. Cardiac magnetic resonance ECV imaging was performed in 126 patients with T1 mapping before and after injection of gadolinium contrast. Conventional LGE images were acquired for the left ventricle. In patients with a prior myocardial infarction, the infarct region had an ECV of 51 ± 8% which did not overlap with the remote 'normal appearing' myocardium that had an ECV of 27 ± 3% (P < 0.001, n = 36). In patients with non-ischaemic cardiomyopathy, the ECV of atypical LGE was 37 ± 6%, whereas the 'normal appearing' myocardium had an ECV of 26 ± 3% (P < 0.001, n = 30). The ECV of 'normal appearing' myocardium increased with age (r = 0.28, P = 0.01, n = 60). The ECV of 'normal appearing' myocardium remote from myocardial infarctions increased as left ventricular ejection fraction decreased (r = -0.50, P = 0.02). Extracellular volume fraction imaging can quantitatively characterize myocardial infarction, atypical diffuse fibrosis, and subtle myocardial abnormalities not clinically apparent on LGE images. Taken within the context of prior literature, these subtle ECV abnormalities are consistent with diffuse fibrosis related to age and changes remote from infarction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats.

            To measure the fractional distribution volume of gadopentetate dimeglumine in normal and reperfused infarcted myocardium at magnetic resonance (MR) imaging by using the fractional distribution volume of technetium 99m-diethylenetriaminepentaacetic acid (DTPA) as an independent reference. Rats were subjected to 1 hour of coronary artery occlusion and 1 hour of reperfusion before inversion-recovery echo-planar imaging or autoradiography. Regional change in relaxation rate (delta R1) ratios for myocardium over blood were compared with radioactivity ratios for myocardium over blood after the injection of 99mTc-DTPA. Both delta R1 and radioactivity ratios demonstrated equilibrium distribution and hence represent partition coefficients (lambda). The fractional distribution volumes were greater in infarcted myocardium (0.90 +/- 0.05 for gadopentetate dimeglumine and 0.89 +/- 0.04 for 99mTc-DTPA) than in normal myocardium (0.23 +/- 0.02 for gadopentetate dimeglumine and 0.16 +/- 0.01 for 99mTc-DTPA). Area at risk at autoradiography was not significantly different from that at histomorphometry. The infarction size defined by using triphenyltetrazolium chloride was 13% +/- 4 smaller than that defined by using autoradiography. The fractional distribution volumes of gadopentetate dimeglumine and 99mTc-DTPA are similar and indicate extracellular distribution in normal myocardium and intracellular as well as extracellular distribution in reperfused infarction. Because the failure of cells to exclude these agents is indicative of necrosis, contrast medium-enhanced MR imaging may be useful to quantify myocardial infarction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of diffuse myocardial fibrosis and its association with myocardial dysfunction in congenital heart disease.

              the etiology of ventricular dysfunction in adult congenital heart disease (ACHD) is not well understood. Diffuse fibrosis is a likely common final pathway and is quantifiable using MRI. patients with ACHD (n=50) were studied with cardiac MRI to quantify systemic ventricular volume and function and diffuse fibrosis. The fibrosis index for a single midventricular plane of the systemic ventricle was quantified by measuring T1 values for blood pool and myocardium before and after administration of gadolinium (0.15 mmol/kg) and then adjusted for hematocrit. Results were compared to healthy volunteers (normal controls, n=14) and patients with acquired heart failure (positive controls, n=4). Patients studied (age, 37±12 years; female sex, 40%) included 11 with a systemic right ventricle (RV), 17 with tetralogy of Fallot, 10 with cyanosis, and 12 with other lesions. The fibrosis index was significantly elevated in patients with ACHD compared to normal controls (31.9±4.9% versus 24.8±2.0%; P=0.001). Values were highest in patients with a systemic RV (35.0±5.8%; P<0.001) and those who were cyanotic (33.7±5.6%; P<0.001). The fibrosis index correlated with end-diastolic volume index (r=0.60; P<0.001) and ventricular ejection fraction (r=-0.53; P<0.001) but not with age or oxygen saturation in patients who were cyanotic. Late gadolinium enhancement did not account for the differences seen. patients with ACHD have evidence of diffuse, extracellular matrix remodeling similar to patients with acquired heart failure. The fibrosis index may facilitate studies on the mechanisms and treatment of myocardial fibrosis and heart failure in these patients.
                Bookmark

                Author and article information

                Journal
                J Cardiovasc Magn Reson
                J Cardiovasc Magn Reson
                Journal of Cardiovascular Magnetic Resonance
                BioMed Central
                1097-6647
                1532-429X
                2012
                10 September 2012
                : 14
                : 1
                : 63
                Affiliations
                [1 ]National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
                [2 ]Siemens Corporate Research, Princeton, NJ, USA
                [3 ]Department of Clinical Physiology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
                Article
                1532-429X-14-63
                10.1186/1532-429X-14-63
                3441905
                22963517
                4b8747f2-3372-4c2e-a6e2-590ca7b799c6
                Copyright ©2012 Kellman et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 May 2012
                : 3 September 2012
                Categories
                Research

                Cardiovascular Medicine
                edema,diffuse fibrosis,extracellular,late enhancement,co-registration,motion correction

                Comments

                Comment on this article

                scite_

                Similar content26

                Cited by127

                Most referenced authors205