35
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Temporal variation of hydroxyl radical generation and 8-hydroxy-2'-deoxyguanosine formation by coarse and fine particulate matter

      Occupational and Environmental Medicine
      BMJ

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To determine the induction of 8-hydroxy-2'-deoxyguanosine (8-OHdG) by fine (<2.5 microm) and coarse (10-2.5 microm) particulate matter (PM) sampled over time at one sampling location, and to relate the observed effects to the hydroxyl radical (*OH) generating activities and transition metal content of these samples, and to meteorological parameters. Weekly samples of coarse and fine PM were analysed for H(2)O(2) dependent *OH formation using electron spin resonance (ESR) and formation of 8-OHdG in calf thymus DNA using an immuno-dotblot assay. Immunocytochemistry was used to determine 8-OHdG formation in A549 human epithelial lung cells. To determine temporal effects, samples from six weeks in summer and six weeks in autumn/winter were compared using ESR and the dotblot assay. Concentrations of leachable V, Cr, Fe, Ni, and Cu were determined by inductively coupled plasma mass spectrometry. Both PM fractions elicited *OH generation as well as 8-OHdG formation in calf thymus DNA and in A549 cells. 8-OHdG formation in the naked DNA was significantly related to *OH generation, but not to metal concentrations except for copper. A significantly higher *OH generation was observed for coarse PM, but not fine PM collected during the autumn/winter season; this was not due to differences in sampled mass or metal content. Specific weather conditions under which increased *OH formation in the coarse mode was observed suggest that other, as yet unknown, anthropogenic components might affect the radical generating capacity of PM. Both coarse and fine PM are able to generate *OH, and induce formation of 8-OHdG. When considered at equal mass, *OH formation shows considerable variability with regard to the fraction of PM, as well as the sampling season. The toxicological implications of this heterogeneity in *OH formation by PM, as can be easily determined by ESR, need further investigation.

          Related collections

          Author and article information

          Journal
          Occupational and Environmental Medicine
          BMJ
          13510711
          May 1 2003
          : 60
          : 5
          : 315-321
          Article
          10.1136/oem.60.5.315
          1740526
          12709515
          4b8950aa-bcbe-4248-ba90-bdc77e763734
          © 2003
          History

          Comments

          Comment on this article