40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is an urgent need to develop molecular biomarkers of brain age in order to advance our understanding of age related neurodegeneration. Recently, we developed a highly accurate epigenetic biomarker of tissue age (known as epigenetic clock) which is based on DNA methylation levels. Here we use n=700 dorsolateral prefrontal cortex (DLPFC) samples from Caucasian subjects of the Religious Order Study and the Rush Memory and Aging Project to examine the association between epigenetic age and Alzheimer’s disease (AD) related cognitive decline, and AD related neuropathological markers.

          Epigenetic age acceleration of DLPFC is correlated with several neuropathological measurements including diffuse plaques (r=0.12, p=0.0015), neuritic plaques (r=0.11, p=0.0036), and amyloid load (r=0.091, p=0.016). Further, it is associated with a decline in global cognitive functioning (β=−0.500, p=0.009), episodic memory (β=−0.411, p=0.009) and working memory (β=−0.405, p=0.011) among individuals with AD. The neuropathological markers may mediate the association between epigenetic age and cognitive decline. Genetic complex trait analysis (GCTA) revealed that epigenetic age acceleration is heritable (h 2=0.41) and has significant genetic correlations with diffuse plaques (r=0.24, p=0.010) and possibly working memory (r=−0.35, p=0.065). Overall, these results suggest that the epigenetic clock may lend itself as a molecular biomarker of brain age.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DNA methylation age of blood predicts all-cause mortality in later life

          Background DNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age. Results Here we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43. Conclusions DNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0584-6) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Aging of blood can be tracked by DNA methylation changes at just three CpG sites

            Background Human aging is associated with DNA methylation changes at specific sites in the genome. These epigenetic modifications may be used to track donor age for forensic analysis or to estimate biological age. Results We perform a comprehensive analysis of methylation profiles to narrow down 102 age-related CpG sites in blood. We demonstrate that most of these age-associated methylation changes are reversed in induced pluripotent stem cells (iPSCs). Methylation levels at three age-related CpGs - located in the genes ITGA2B, ASPA and PDE4C - were subsequently analyzed by bisulfite pyrosequencing of 151 blood samples. This epigenetic aging signature facilitates age predictions with a mean absolute deviation from chronological age of less than 5 years. This precision is higher than age predictions based on telomere length. Variation of age predictions correlates moderately with clinical and lifestyle parameters supporting the notion that age-associated methylation changes are associated more with biological age than with chronological age. Furthermore, patients with acquired aplastic anemia or dyskeratosis congenita - two diseases associated with progressive bone marrow failure and severe telomere attrition - are predicted to be prematurely aged. Conclusions Our epigenetic aging signature provides a simple biomarker to estimate the state of aging in blood. Age-associated DNA methylation changes are counteracted in iPSCs. On the other hand, over-estimation of chronological age in bone marrow failure syndromes is indicative for exhaustion of the hematopoietic cell pool. Thus, epigenetic changes upon aging seem to reflect biological aging of blood.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Obesity accelerates epigenetic aging of human liver.

              Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.
                Bookmark

                Author and article information

                Journal
                Aging (Albany NY)
                Aging (Albany NY)
                ImpactJ
                Aging (Albany NY)
                Impact Journals LLC
                1945-4589
                December 2015
                18 December 2015
                : 7
                : 12
                : 1198-1211
                Affiliations
                1 Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
                2 Center for Neurobehavioral Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
                3 Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
                4 Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
                5 Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
                Author notes
                Correspondence to: Steve Horvath, shorvath@ 123456mednet.ucla.edu
                Article
                10.18632/aging.100864
                4712342
                26684672
                4b901098-a524-410a-94f5-26f6df1d0592
                Copyright: © 2015 Levine et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 8 November 2015
                : 30 November 2015
                Categories
                Research Paper

                Cell biology
                epigenetics,neuritic plaques,amyloids,cognitive functioning,memory,alzheimer's disease,epigenetic clock,dna methylation

                Comments

                Comment on this article