30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reduced IL-10 Production in Fetal Type II Epithelial Cells Exposed to Mechanical Stretch Is Mediated via Activation of IL-6-SOCS3 Signaling Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin-10: new perspectives on an old cytokine.

          Interleukin-10 (IL-10) has long been recognized to have potent and broad-spectrum anti-inflammatory activity, which has been unequivocally established in various models of infection, inflammation, and even in cancer. However, because of the marginal successes of the initial clinical trials using recombinant IL-10, some of the interest in this cytokine as an anti-inflammatory therapeutic has diminished. New work showing IL-10 production from regulatory T cells and even T-helper 1 T cells has reinvigorated the field and revealed the power of this cytokine to influence immune responses. Furthermore, new preclinical studies suggest that combination therapies, using antibodies to IL-10 along with chemotherapy, can be effective in treating bacterial, viral, or neoplastic diseases. Studies to understand IL-10 gene expression in the various cell types may lead to new therapeutics to enhance or inhibit IL-10 production. In this review, we summarize what is known about the regulation of IL-10 gene expression by various immune cells. We speculate on the promise that this cytokine holds to influence immune responses and mitigate immune pathologies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response.

            Cytokines are an integral component of the adaptive and innate immune responses. The signaling pathways triggered by the engagement of cytokines with their specific cell surface receptors have been extensively studied and have provided a profound understanding of the intracellular machinery that translates exposure of cells to cytokine to a coordinated biological response. It has also become clear that cells have evolved sophisticated mechanisms to prevent excessive responses to cytokines. In this review we focus on the suppressors of cytokine signaling (SOCS) family of cytoplasmic proteins that completes a negative feedback loop to attenuate signal transduction from cytokines that act through the janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. SOCS proteins inhibit components of the cytokine signaling cascade via direct binding or by preventing access to the signaling complex. The SOCS proteins also appear to target signal transducers for proteasomal destruction. Analyses of genetically modified mice in which SOCS proteins are overexpressed or deleted have established that this family of negative regulators has indispensable roles in regulating cytokine responses in cells of the immune system as well as other tissues. Emerging evidence also suggests that disruption of SOCS expression or activity is associated with several immune and inflammatory diseases, raising the prospect that manipulation of SOCS activity may provide a novel future therapeutic strategy in the management of immunological disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes.

              Interleukin-10 (IL-10) activates a diverse array of functional responses in mononuclear phagocytes. Functional IL-10 receptor (IL-10R) complexes are tetramers consisting of two IL-10R1 polypeptide chains and two IL-10R2 chains. Binding of IL-10 to the extracellular domain of IL-10R1 activates phosphorylation of the receptor-associated Janus tyrosine kinases, JAK1 and Tyk2. These kinases then phosphorylate specific tyrosine residues (Y446 and Y496) on the intracellular domain of the IL-10R1 chain. Once phosphorylated, these tyrosine residues (and their flanking peptide sequences) serve as temporary docking sites for the latent transcription factor, STAT3 (signal transducer and activator of transcription-3). STAT3 binds to these sites via its SH2 (Src homology 2) domain, and is, in turn, tyrosine-phosphorylated by the receptor-associated JAKs. It then homodimerizes and translocates to the nucleus where it binds with high affinity to STAT-binding elements (SBE) in the promoters of various IL-10-responsive genes. One of these genes, SOCS-3 (Suppressor of Cytokine Signaling-3) is a member of a newly identified family of genes that inhibit JAK/STAT-dependent signaling. Moreover, the ability of IL-10 to induce de novo synthesis of SOCS-3 in monocytes correlates with its ability to inhibit expression of many genes in these cells, including endotoxin-inducible cytokines such as tumor necrosis factor-alpha (TNF-alpha) and IL-1. Thus, the ability of IL-10 to inhibit gene expression in monocytes is associated with its ability to rapidly induce synthesis of SOCS-3.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                19 March 2013
                : 8
                : 3
                : e59598
                Affiliations
                [1]Department of Pediatrics, Women & Infants Hospital of Rhode Island and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
                University of Alabama-Birmingham, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MH SS JSE. Performed the experiments: MH YW RH ZH. Analyzed the data: MH JSE. Wrote the paper: MH JSE.

                Article
                PONE-D-12-04519
                10.1371/journal.pone.0059598
                3602195
                23527226
                4b9e4fd6-3b1b-4077-848a-4f968350abdf
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 14 February 2012
                : 20 February 2013
                Page count
                Pages: 10
                Funding
                This work was supported by National Institute of Health grant R01 HD052670. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immune System
                Cytokines
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Cellular Types
                Endothelial Cells
                Signal Transduction
                Signaling in Selected Disciplines
                Immunological Signaling
                Cellular Stress Responses
                Medicine
                Pediatrics
                Neonatology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article