24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Strategy for the Cleaning of Paper Artworks: A Smart Combination of Gels and Biosensors

      , , ,
      Advances in Chemistry
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work an outlook on the design and application, in the cultural heritage field, of new tools for diagnostic and cleaning use, based on biocompatible hydrogels and electrochemical sensors, is reported. The use of hydrogels is intriguing because it does not require liquid treatment that could induce damage on artworks, while electrochemical biosensors not only are easy to prepare, but also can be selective for a specific compound and therefore are suitable for monitoring the cleaning process. In the field of restoration of paper artworks, more efforts have to be done in order to know how to perform the best way for an effective restoration. Rigid Gellan gel, made up of Gellan gum and calcium acetate, was proposed as a paper cleaning treatment, and selective biosensors for substances to be removed from this gel have been obtained by choosing the appropriate enzymes to be immobilized. Using this approach, it is possible to know when the cleanup process will be completed, avoiding lengthy and sometimes unnecessary cleaning material applications.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.

          The supramolecular structures formed between cyclodextrins (CDs) and polymers have inspired interesting developments of novel supramolecular biomaterials. This review will update the recent progress in studies on supramolecular structures based on CDs and block copolymers, followed by the design and synthesis of CD-based supramolecular hydrogels and biodegradable polyrotaxanes for potential controlled drug delivery, and CD-containing cationic polymers and cationic polyrotaxanes for gene delivery. Supramolecular hydrogels based on the self-assembly of the inclusion complexes between CDs with biodegradable block copolymers could be used as promising injectable drug delivery systems for sustained controlled release of macromolecular drugs. Biodegradable polyrotaxanes with drug-conjugated CDs threaded on a polymer chain with degradable end-caps could be interesting supramolecular prodrugs for controlled and targeting delivery of drugs. CD-containing cationic polymers as gene carriers showed reduced cytotoxicity than non-CD-containing polymer counterparts. More importantly, the polyplexes of CD-containing cationic polymers with DNA could be pegylated through a supramolecular process using inclusion complexation between the CD moieties and a modified PEO. Finally, new cationic polyrotaxanes composed of multiple oligoethylenimine-grafted CDs threaded and end-capped on a block copolymer chain were designed and synthesized as a new class of polymeric gene delivery vectors, where the chain-interlocked cationic cyclic units formed an integrated supramolecular entity to function as a macromolecular gene vector. The development of the supramolecular biomaterials through inclusion complexation has opened up a new approach for designing novel drug and gene delivery systems, which may have many advantages over the systems based on the conventional polymeric materials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gelation of gellan – A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery.

              A materials design of a new supramolecular hydrogel self-assembled between alpha-cyclodextrin and a biodegradable poly(ethylene oxide)-poly[(r)-3-hydroxybutyrate]-poly(ethylene oxide) (PEO-PHB-PEO) triblock copolymer was demonstrated. The cooperation effect of complexation of PEO segments with alpha-cyclodextrin and the hydrophobic interaction between PHB blocks resulted in the formation of the supramolecular hydrogel with a strong macromolecular network. The in vitro release kinetics studies of fluorescein isothiocyanate labeled dextran (dextran-FITC) model drug from the hydrogel showed that the hydrogel was suitable for relatively long-term sustained controlled release of macromolecular drugs, which many simple triblock copolymer hydrogel systems could not achieve. The hydrogel was found to be thixotropic and reversible, and can be applied as a promising injectable drug delivery system.
                Bookmark

                Author and article information

                Journal
                Advances in Chemistry
                Advances in Chemistry
                Hindawi Limited
                2356-6612
                2314-7571
                2014
                2014
                : 2014
                :
                : 1-10
                Article
                10.1155/2014/385674
                4ba3ee98-7012-4df9-b64c-c2cef83c094e
                © 2014

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article