2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Viral T7 RNA Polymerase Ratcheting Along DNA With Fidelity Control

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNA polymerase (RNAP) from bacteriophage T7 is a representative single-subunit viral RNAP that can transcribe with high promoter activities without assistances from transcription factors. We accordingly studied this small transcription machine computationally as a model system to understand underlying mechanisms of mechano-chemical coupling and fidelity control in the RNAP transcription elongation. Here we summarize our computational work from several recent publications to demonstrate first how T7 RNAP translocates via Brownian alike motions along DNA right after the catalytic product release. Then we show how the backward translocation motions are prevented at post-translocation upon successful nucleotide incorporation, which is also subject to stepwise nucleotide selection and acts as a pawl for “selective ratcheting”. The structural dynamics and energetics features revealed from our atomistic molecular dynamics (MD) simulations and related analyses on the single-subunit T7 RNAP thus provided detailed and quantitative characterizations on the Brownian-ratchet working scenario of a prototypical transcription machine with sophisticated nucleotide selectivity for fidelity control. The presented mechanisms can be more or less general for structurally similar viral or mitochondrial RNAPs and some of DNA polymerases, or even for the RNAP engine of the more complicated transcription machinery in higher organisms.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          A general two-metal-ion mechanism for catalytic RNA.

          A mechanism is proposed for the RNA-catalyzed reactions involved in RNA splicing and RNase P hydrolysis of precursor tRNA. The mechanism postulates that chemical catalysis is facilitated by two divalent metal ions 3.9 A apart, as in phosphoryl transfer reactions catalyzed by protein enzymes, such as the 3',5'-exonuclease of Escherichia coli DNA polymerase I. One metal ion activates the attacking water or sugar hydroxyl, while the other coordinates and stabilizes the oxyanion leaving group. Both ions act as Lewis acids and stabilize the expected pentacovalent transition state. The symmetry of a two-metal-ion catalytic site fits well with the known reaction pathway of group I self-splicing introns and can also be reconciled with emerging data on group II self-splicing introns, the spliceosome, and RNase P. The role of the RNA is to position the two catalytic metal ions and properly orient the substrates via three specific binding sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct observation of base-pair stepping by RNA polymerase.

            During transcription, RNA polymerase (RNAP) moves processively along a DNA template, creating a complementary RNA. Here we present the development of an ultra-stable optical trapping system with ångström-level resolution, which we used to monitor transcriptional elongation by single molecules of Escherichia coli RNAP. Records showed discrete steps averaging 3.7 +/- 0.6 A, a distance equivalent to the mean rise per base found in B-DNA. By combining our results with quantitative gel analysis, we conclude that RNAP advances along DNA by a single base pair per nucleotide addition to the nascent RNA. We also determined the force-velocity relationship for transcription at both saturating and sub-saturating nucleotide concentrations; fits to these data returned a characteristic distance parameter equivalent to one base pair. Global fits were inconsistent with a model for movement incorporating a power stroke tightly coupled to pyrophosphate release, but consistent with a brownian ratchet model incorporating a secondary NTP binding site.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              DNA polymerases: structural diversity and common mechanisms.

                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Struct Biotechnol J
                Comput Struct Biotechnol J
                Computational and Structural Biotechnology Journal
                Research Network of Computational and Structural Biotechnology
                2001-0370
                09 May 2019
                2019
                09 May 2019
                : 17
                : 638-644
                Affiliations
                [a ]Beijing Computational Science Research Center, Beijing, 100193, China
                [b ]Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China
                Author notes
                [* ]Corresponding author. jinyu@ 123456csrc.ac.cn
                Article
                S2001-0370(19)30086-8
                10.1016/j.csbj.2019.05.001
                6535458
                31193497
                4ba7f73a-186b-495f-9007-2b0d3a1a6f1f
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 1 March 2019
                : 25 April 2019
                : 4 May 2019
                Categories
                Review Article

                rna polymerase,ppi release,translocation,nucleotide selection,fidelity control

                Comments

                Comment on this article