34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Cutaneous Drug Delivery of Capsaicin after in vitro Administration of the 8% Capsaicin Dermal Patch System

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Epicutaneous application of capsaicin causes a long-lasting analgesic effect by binding to the membrane transient receptor potential vanilloid 1 (TRPV1) on mechanoheat-sensitive C and Aδ fibres, changing axonal integrity and inhibiting neurogenic inflammatory processes. To date, no information is available regarding the cutaneous drug delivery of capsaicin following patch application. Methods: Using a Franz diffusion cell, the cutaneous concentration-time profiles 30, 60 and 90 min after application of a patch containing 8% capsaicin (640 µg/cm<sup>2</sup>) on ex vivo thin (mamma) and thick (plantar) human skin were investigated at 32°C, and additionally at 42°C for thin skin and 10°C for thick skin. An HPLC-MS method was used for the analytic detection of capsaicin. Results: The results show that already after a 30-min application of the 8% capsaicin patch, an equilibrium reservoir can be found in the stratum corneum in both thick and thin skin. Under physiological temperature conditions, a sufficient bioavailability of capsaicin in the cutaneous target compartments can be found. Raising the temperature to 42°C has no relevant impact on the concentration-time profile, while reducing the temperature to 10°C leads to a significantly lower bioavailability. Conclusion: After 30 min of application, a sufficient cutaneous bioavailability of capsaicin is reached in thick as well as thin skin. Whether shorter application times may suffice to achieve therapeutic effectiveness requires further investigation. © 2014 S. Karger AG, Basel

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          The diversity in the vanilloid (TRPV) receptor family of ion channels.

          Following cloning of the vanilloid receptor 1 (VR1) at least four other related proteins have been identified. Together, these form a distinct subgroup of the transient receptor potential (TRP) family of ion channels. Members of the vanilloid receptor family (TRPV) are activated by a diverse range of stimuli, including heat, protons, lipids, phorbols, phosphorylation, changes in extracellular osmolarity and/or pressure, and depletion of intracellular Ca2+ stores. However, VR1 remains the only channel activated by vanilloids such as capsaicin. These channels are excellent molecular candidates to fulfil a range of sensory and/or cellular roles that are well characterized physiologically. Furthermore, as novel pharmacological targets, the vanilloid receptors have potential for the development of many future disease treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expression of vanilloid receptor subtype 1 in cutaneous sensory nerve fibers, mast cells, and epithelial cells of appendage structures.

            The vanilloid receptor subtype 1 (VR1)/(TRPV1), binding capsaicin, is a non-selective cation channel that recently has been shown in human keratinocytes in vitro and in vivo. However, a description of VR1 localization in other cutaneous compartments in particular cutaneous nerve fibers is still lacking. We therefore investigated VR1 immunoreactivity as well as mRNA and protein expression in a series (n = 26) of normal (n = 7), diseased (n = 13) [prurigo nodularis (PN) (n = 10), generalized pruritus (n = 1), and mastocytosis (n = 2)], and capsaicin-treated human skin (n = 6). VR1 immunoreactivity could be observed in cutaneous sensory nerve fibers, mast cells, epidermal keratinocytes, dermal blood vessels, the inner root sheet and the infundibulum of hair follicles, differentiated sebocytes, sweat gland ducts, and the secretory portion of eccrine sweat glands. Upon reverse transcriptase-polymerase chain reaction and Western blot analysis, VR1 was detected in mast cells and keratinocytes from human skin. In pruritic skin of PN, VR1 expression was highly increased in epidermal keratinocytes and nerve fibers, which was normalized after capsaicin application. During capsaicin therapy, a reduction of neuropeptides (substance P, calcitonin gene-related peptide) was observed. After cessation of capsaicin therapy, neuropeptides re-accumulated in skin nerves. In conclusion, VR1 is widely distributed in the skin, suggesting a major role for this receptor, e.g. in nociception and neurogenic inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

              Background Transient receptor potential (TRP) receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG) sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. Methods We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14) and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG) (n = 11), injured spinal nerve roots (n = 9), diabetic neuropathy skin (n = 8), non-diabetic neuropathic nerve biopsies (n = 6), their respective control tissues, and human post mortem spinal cord, using immunohistological methods. Results TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. Conclusion The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels in nerve fibres in diabetic neuropathy skin may result from the known decrease of nerve growth factor (NGF) levels. The role of TRPs in keratinocytes is unknown, but a relationship to changes in NGF levels, which is produced by keratinocytes, deserves investigation. TRPV1 represents a more selective therapeutic target than other TRPs for pain and hypersensitivity, particularly in post-traumatic neuropathy.
                Bookmark

                Author and article information

                Journal
                SPP
                Skin Pharmacol Physiol
                10.1159/issn.1660-5527
                Skin Pharmacology and Physiology
                S. Karger AG
                1660-5527
                1660-5535
                2015
                February 2015
                23 September 2014
                : 28
                : 2
                : 65-74
                Affiliations
                aDepartment of Dermatology and Venereology, bInstitute of Applied Dermatopharmacy, and cInstitute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), and dAstellas Pharma GmbH, Munich, Germany
                Author notes
                *Johannes Wohlrab, MD, PhD, Department of Dermatology and Venereology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, DE-06097 Halle (Saale) (Germany), E-Mail johannes.wohlrab@medizin.uni-halle.de
                Article
                362740 Skin Pharmacol Physiol 2015;28:65-74
                10.1159/000362740
                25277470
                4bb381c9-4490-499f-b7b8-7309d2eabc63
                © 2014 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 06 December 2013
                : 05 April 2014
                Page count
                Figures: 5, Tables: 3, References: 65, Pages: 10
                Categories
                Original Paper

                Oncology & Radiotherapy,Pathology,Surgery,Dermatology,Pharmacology & Pharmaceutical medicine
                Cutaneous drug delivery,Capsaicin,Dermal patch

                Comments

                Comment on this article