49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Germin-like proteins (GLPs) are defined by their sequence homology to germins from barley and are present ubiquitously in plants. Analyses of corresponding genes have revealed diverse functions of GLPs in plant development and biotic and abiotic stresses. This study describes the identification of a family of 14 germin-like genes from Brassica napus ( BnGLP) designated BnGLP1BnGLP14 and investigated potential functions of BnGLPs in plant defense against the necrotrophic fungus Sclerotinia sclerotiorum. Sequence alignment and phylogenetic analyses classify the 14 BnGLPs into four groups, which were clearly distinguished from known germin oxalic acid oxidases. Transcriptional responses of the BnGLP genes to S. sclerotiorum infection was determined by comparing cultivars of susceptible B. napus ‘Falcon’ and partially resistant B. napus ‘Zhongshuang 9’. Of the 14 BnGLP genes tested, BnGLP3 was transcriptionally upregulated in both B. napus cultivars at 6h after S. sclerotiorum infection, while upregulation of BnGLP12 was restricted to resistant B. napus ‘Zhongshuang 9’. Biochemical analysis of five representative BnGLP members identified a H 2O 2-generating superoxide dismutase activity only for higher molecular weight complexes of BnGLP3 and BnGLP12. By analogy, H 2O 2 formation at infected leaf sites increased after 6h, with even higher H 2O 2 production in B. napus ‘Zhongshuang 9’ compared with B. napus ‘Falcon’. Conversely, exogenous application of H 2O 2 significantly reduced the susceptibility of B. napus ‘Falcon’. These data suggest that early induction of BnGLP3 and BnGLP12 participates in an oxidative burst that may play a pivotal role in defence of B. napus against S. sclerotiorum.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen.

          SUMMARY Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In addition, current tools for research and strategies to combat S. sclerotiorum are discussed. Sclerotinia sclerotiorum (Lib.) de Bary: kingdom Fungi, phylum Ascomycota, class Discomycetes, order Helotiales, family Sclerotiniaceae, genus Sclerotinia. Hyphae are hyaline, septate, branched and multinucleate. Mycelium may appear white to tan in culture and in planta. No asexual conidia are produced. Long-term survival is mediated through the sclerotium; a pigmented, multi-hyphal structure that can remain viable over long periods of time under unfavourable conditions for growth. Sclerotia can germinate to produce mycelia or apothecia depending on environmental conditions. Apothecia produce ascospores, which are the primary means of infection in most host plants. S. sclerotiorum is capable of colonizing over 400 plant species found worldwide. The majority of these species are dicotyledonous, although a number of agriculturally significant monocotyledonous plants are also hosts. Disease symptoms: Leaves usually have water-soaked lesions that expand rapidly and move down the petiole into the stem. Infected stems of some species will first develop dark lesions whereas the initial indication in other hosts is the appearance of water-soaked stem lesions. Lesions usually develop into necrotic tissues that subsequently develop patches of fluffy white mycelium, often with sclerotia, which is the most obvious sign of plants infected with S. sclerotiorum. http://www.whitemoldresearch.com; http://www.broad.mit.edu/annotation/fungi/sclerotinia_sclerotiorum.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ROS in biotic interactions.

            Production of reactive oxygen species (ROS) is a hallmark of successful recognition of infection and activation of plant defenses. ROS play multifaceted signaling functions mediating the establishment of multiple responses and can act as local toxins. Controversy surrounds the origin of these ROS. Several enzymatic mechanisms, among them a plasma membrane NADPH oxidase and cell wall peroxidases, can be responsible for the ROS detected in the apoplast. However, high levels of ROS from metabolic origins and/or from downregulation of ROS-scavenging systems can also accumulate in different compartments of the plant cell. This compartmentalization could contribute to the specific functions attributed to ROS. Additionally, ROS interact with other signals and phytohormones, which could explain the variety of different scenarios where ROS signaling plays an important part. Interestingly, pathogens have developed ways to alter ROS accumulation or signaling to modify plant defenses. Although ROS have been mainly associated with pathogen attack, ROS are also detected in other biotic interactions including beneficial symbiotic interactions with bacteria or mycorrhiza, suggesting that ROS production is a common feature of different biotic interactions. Here, we present a comprehensive review describing the newer views in ROS signaling and function during biotic stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A germin-like protein gene family functions as a complex quantitative trait locus conferring broad-spectrum disease resistance in rice.

              Plant disease resistance governed by quantitative trait loci (QTL) is predicted to be effective against a broad spectrum of pathogens and long lasting. Use of these QTL to improve crop species, however, is hindered because the genes contributing to the trait are not known. Five disease resistance QTL that colocalized with defense response genes were accumulated by marker-aided selection to develop blast-resistant varieties. One advanced backcross line carrying the major-effect QTL on chromosome (chr) 8, which included a cluster of 12 germin-like protein (OsGLP) gene members, exhibited resistance to rice (Oryza sativa) blast disease over 14 cropping seasons. To determine if OsGLP members contribute to resistance and if the resistance was broad spectrum, a highly conserved portion of the OsGLP coding region was used as an RNA interference trigger to silence a few to all expressed chr 8 OsGLP family members. Challenge with two different fungal pathogens (causal agents of rice blast and sheath blight diseases) revealed that as more chr 8 OsGLP genes were suppressed, disease susceptibility of the plants increased. Of the 12 chr 8 OsGLPs, one clustered subfamily (OsGER4) contributed most to resistance. The similarities of sequence, gene organization, and roles in disease resistance of GLP family members in rice and other cereals, including barley (Hordeum vulgare) and wheat (Triticum aestivum), suggest that resistance contributed by the chr 8 OsGLP is a broad-spectrum, basal mechanism conserved among the Gramineae. Natural selection may have preserved a whole gene family to provide a stepwise, flexible defense response to pathogen invasion.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                September 2012
                9 August 2012
                9 August 2012
                : 63
                : 15
                : 5507-5519
                Affiliations
                simpleDepartment of Molecular Phytopathology, Institute of Phytopathology, Christian-Albrechts-Universität of Kiel Germany, Hermann, Rodewald Str. 9 D-24118 KielGermany
                Author notes
                * To whom correspondence should be addressed. E-mail: dcai@ 123456phytomed.uni-kiel.de
                Article
                10.1093/jxb/ers203
                3444267
                22888126
                4bbed603-c6d4-404f-9faf-e00413caebdf
                © The Author [2012]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/bync/3.0/uk/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Pages: 13
                Categories
                Research Paper

                Plant science & Botany
                superoxide dismutase (sod),brassica napus,plant disease resistance,sclerotinia sclerotiorum,oxidative burst,germin-like proteins (glps)

                Comments

                Comment on this article