178
views
0
recommends
+1 Recommend
0 collections
    12
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cep164, a novel centriole appendage protein required for primary cilium formation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary cilia (PC) function as microtubule-based sensory antennae projecting from the surface of many eukaryotic cells. They play important roles in mechano- and chemosensory perception and their dysfunction is implicated in developmental disorders and severe diseases. The basal body that functions in PC assembly is derived from the mature centriole, a component of the centrosome. Through a small interfering RNA screen we found several centrosomal proteins (Ceps) to be involved in PC formation. One newly identified protein, Cep164, was indispensable for PC formation and hence characterized in detail. By immunogold electron microscopy, Cep164 could be localized to the distal appendages of mature centrioles. In contrast to ninein and Cep170, two components of subdistal appendages, Cep164 persisted at centrioles throughout mitosis. Moreover, the localizations of Cep164 and ninein/Cep170 were mutually independent during interphase. These data implicate distal appendages in PC formation and identify Cep164 as an excellent marker for these structures.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          RADIOAUTOGRAPHIC STUDIES OF CHOLINE INCORPORATION INTO PERIPHERAL NERVE MYELIN

          This radioautographic study was designed to localize the cytological sites involved in the incorporation of a lipid precursor into the myelin and the myelin-related cell of the peripheral nervous system. Both myelinating and fully myelinated cultures of rat dorsal root ganglia were exposed to a 30-min pulse of tritiated choline and either fixed immediately or allowed 6 or 48 hr of chase incubation before fixation. After Epon embedding, light and electron microscopic radioautograms were prepared with Ilford L-4 emulsion. Analysis of the pattern of choline incorporation into myelinating cultures indicated that radioactivity appeared all along the length of the internode, without there being a preferential site of initial incorporation. Light microscopic radioautograms of cultures at varying states of maturity were compared in order to determine the relative degree of myelin labeling. This analysis indicated that the myelin-Schwann cell unit in the fully myelinated cultures incorporated choline as actively as did this unit in the myelinating cultures. Because of technical difficulties, it was not possible to determine the precise localization of the incorporated radioactivity within the compact myelin. These data are related to recent biochemical studies indicating that the mature myelin of the central nervous system does incorporate a significant amount of lipid precursor under the appropriate experimental conditions. These observations support the concept that a significant amount of myelin-related metabolic activity occurs in mature tissue; this activity is considered part of an essential and continuous process of myelin maintenance and repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic characterization of the human centrosome by protein correlation profiling.

            The centrosome is the major microtubule-organizing centre of animal cells and through its influence on the cytoskeleton is involved in cell shape, polarity and motility. It also has a crucial function in cell division because it determines the poles of the mitotic spindle that segregates duplicated chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ciliopathies: an emerging class of human genetic disorders.

              Cilia and flagella are ancient, evolutionarily conserved organelles that project from cell surfaces to perform diverse biological roles, including whole-cell locomotion; movement of fluid; chemo-, mechano-, and photosensation; and sexual reproduction. Consistent with their stringent evolutionary conservation, defects in cilia are associated with a range of human diseases, such as primary ciliary dyskinesia, hydrocephalus, polycystic liver and kidney disease, and some forms of retinal degeneration. Recent evidence indicates that ciliary defects can lead to a broader set of developmental and adult phenotypes, with mutations in ciliary proteins now associated with nephronophthisis, Bardet-Biedl syndrome, Alstrom syndrome, and Meckel-Gruber syndrome. The molecular data linking seemingly unrelated clinical entities are beginning to highlight a common theme, where defects in ciliary structure and function can lead to a predictable phenotypic pattern that has potentially predictive and therapeutic value.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                22 October 2007
                : 179
                : 2
                : 321-330
                Affiliations
                [1 ]Department of Cell Biology, Max Planck Institute of Biochemistry, Martinsried D-82152, Germany
                [2 ]Electron Microscopy Unit, Center for Plant Molecular Biology, University of Tübingen, Tübingen D-72076, Germany
                Author notes

                Correspondence to E. Nigg: nigg@ 123456biochem.mpg.de

                Article
                200707181
                10.1083/jcb.200707181
                2064767
                17954613
                4bc1d96d-4ddb-4abe-9bc4-79cfa74db84f
                Copyright © 2007, The Rockefeller University Press
                History
                : 26 July 2007
                : 22 September 2007
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article