21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of vernalization on tuberization and flowering in the Tibetan turnip is associated with changes in the expression of FLC homologues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The turnip ( Brassica rapa var . rapa) is a biennial crop that is planted in late summer/early fall and forms fleshy tubers for food in temperate regions. The harvested tubers then overwinter and are planted again the next spring for flowering and seeds. FLOWERING LOCUS C ( FLC) is a MADS-box transcription factor that acts as a major repressor of floral transition by suppressing the flowering promoters FT and SOC1. Here we show that vernalization effectively represses tuber formation and promotes flowering in Tibetan turnip. We functionally characterized four FLC homologues ( BrrFLC1, FLC2, FLC3, and FLC5), and found that BrrFLC2 and BrrFLC1 play a major role in repressing flowering in turnip and in transgenic Arabidopsis. In contrast, tuber formation was correlated with BrrFLC1 expression in the hypocotyl and was repressed under cold treatment following the quantitative downregulation of BrrFLC1. Grafting experiments of non-vernalized and vernalized turnips revealed that vernalization independently suppressed tuberization in the tuber or hypocotyl of the rootstock or scion, which occurred in parallel with the reduction in BrrFLC1 activity. Together, our results demonstrate that the Tibetan turnip is highly responsive to cold exposure, which is associated with the expression levels of BrrFLC genes.

          Graphical abstract

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          BRAD, the genetics and genomics database for Brassica plants

          Background Brassica species include both vegetable and oilseed crops, which are very important to the daily life of common human beings. Meanwhile, the Brassica species represent an excellent system for studying numerous aspects of plant biology, specifically for the analysis of genome evolution following polyploidy, so it is also very important for scientific research. Now, the genome of Brassica rapa has already been assembled, it is the time to do deep mining of the genome data. Description BRAD, the Brassica database, is a web-based resource focusing on genome scale genetic and genomic data for important Brassica crops. BRAD was built based on the first whole genome sequence and on further data analysis of the Brassica A genome species, Brassica rapa (Chiifu-401-42). It provides datasets, such as the complete genome sequence of B. rapa, which was de novo assembled from Illumina GA II short reads and from BAC clone sequences, predicted genes and associated annotations, non coding RNAs, transposable elements (TE), B. rapa genes' orthologous to those in A. thaliana, as well as genetic markers and linkage maps. BRAD offers useful searching and data mining tools, including search across annotation datasets, search for syntenic or non-syntenic orthologs, and to search the flanking regions of a certain target, as well as the tools of BLAST and Gbrowse. BRAD allows users to enter almost any kind of information, such as a B. rapa or A. thaliana gene ID, physical position or genetic marker. Conclusion BRAD, a new database which focuses on the genetics and genomics of the Brassica plants has been developed, it aims at helping scientists and breeders to fully and efficiently use the information of genome data of Brassica plants. BRAD will be continuously updated and can be accessed through http://brassicadb.org.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization.

            Vernalization, the acceleration of flowering by winter, involves cold-induced epigenetic silencing of Arabidopsis FLC. This process has been shown to require conserved Polycomb Repressive Complex 2 (PRC2) components including the Su(z)12 homologue, VRN2, and two plant homeodomain (PHD) finger proteins, VRN5 and VIN3. However, the sequence of events leading to FLC repression was unclear. Here we show that, contrary to expectations, VRN2 associates throughout the FLC locus independently of cold. The vernalization-induced silencing is triggered by the cold-dependent association of the PHD finger protein VRN5 to a specific domain in FLC intron 1, and this association is dependent on the cold-induced PHD protein VIN3. In plants returned to warm conditions, VRN5 distribution changes, and it associates more broadly over FLC, coincident with significant increases in H3K27me3. Biochemical purification of a VRN5 complex showed that during prolonged cold a PHD-PRC2 complex forms composed of core PRC2 components (VRN2, SWINGER [an E(Z) HMTase homologue], FIE [an ESC homologue], MSI1 [p55 homologue]), and three related PHD finger proteins, VRN5, VIN3, and VEL1. The PHD-PRC2 activity increases H3K27me3 throughout the locus to levels sufficient for stable silencing. Arabidopsis PHD-PRC2 thus seems to act similarly to Pcl-PRC2 of Drosophila and PHF1-PRC2 of mammals. These data show FLC silencing involves changed composition and dynamic redistribution of Polycomb complexes at different stages of the vernalization process, a mechanism with greater parallels to Polycomb silencing of certain mammalian loci than the classic Drosophila Polycomb targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis.

              Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time.
                Bookmark

                Author and article information

                Contributors
                Journal
                Plant Divers
                Plant Divers
                Plant Diversity
                KeAi Publishing
                2096-2703
                2468-2659
                17 January 2018
                April 2018
                17 January 2018
                : 40
                : 2
                : 50-56
                Affiliations
                [a ]Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
                [b ]Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
                [c ]University of Chinese Academy of Sciences, Beijing 100049, China
                [d ]School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
                Author notes
                []Corresponding author. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Fax: +86 871 65230873. kongxiangxiang@ 123456mail.kib.ac.cn
                [∗∗ ]Corresponding author. Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. Fax: +86 871 65230873. yangyp@ 123456mail.kib.ac.cn
                [1]

                Coauthors, These authors contributed equally to this work.

                Article
                S2468-2659(17)30123-3
                10.1016/j.pld.2018.01.002
                6091928
                30159542
                4bc4fb87-917f-4f33-a20e-9092339445ee
                Copyright © 2018 Kunming Institute of Botany, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 28 August 2017
                : 5 January 2018
                : 9 January 2018
                Categories
                Article

                tibetan turnip,tuberization,flowering,brrflc genes,vernalization

                Comments

                Comment on this article