Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Mechanisms of Ca 2+-Dependent Calcineurin Activation in Mechanical Stretch-Induced Hypertrophy

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pressure overload is the major stimulus for cardiac hypertrophy. Accumulating evidence suggests an important role for calcium-induced activation of calcineurin in mediating hypertrophic signaling. Hypertrophy is an important risk factor for cardiovascular morbidity and mortality. We therefore employed an in vitro mechanical stretch model of cultured neonatal cardiomyocytes to evaluate proposed mechanisms of calcium-induced calcineurin activation in terms of inhibition of calcineurin activity and hypertrophy. The protein/DNA ratio and ANP gene expression were used as markers for stretch-induced hypertrophy. Stretch increased the calcineurin activity, MCIP1 gene expression and DNA binding of NFATc as well as the protein/DNA ratio and ANP mRNA in a significant manner. The specific inhibitor of calcineurin, cyclosporin A, inhibited the stretch-induced increase in calcineurin activity, MCIP1 gene expression and hypertrophy. The L-type Ca<sup>2+</sup> channel blocker nifedipine and a blocker of the Na<sup>+</sup>/H<sup>+</sup> exchanger (cariporide) both suppressed stretch-dependent enhanced calcineurin activity and hypertrophy. Also application of a blocker of the Na<sup>+</sup>/Ca<sup>2+</sup> exchanger (KB-R7943) was effective in preventing calcineurin activation and increases in the protein/DNA ratio. Inhibition of capacitative Ca<sup>2+</sup> entry with SKF 96365 was also sufficient to abrogate calcineurin activation and hypertrophy. The blocker of stretch-activated ion channels, streptomycin, was without effect on stretch-induced hypertrophy and calcineurin activity. The present work suggests that of the proposed mechanisms for the calcium-induced activation of calcineurin (L-type Ca<sup>2+</sup> channels, capacitative Ca<sup>2+</sup> entry, Na<sup>+</sup>/H<sup>+</sup> exchanger, Na<sup>+</sup>/Ca<sup>2+</sup> exchanger and stretch-activated channels) all but stretch-activated channels are possible targets for the inhibition of hypertrophy.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          The cellular and molecular response of cardiac myocytes to mechanical stress.

           S Izumo,  J Sadoshima (1996)
          External load plays a critical role in determining muscle mass and its phenotype in cardiac myocytes. Cardiac myocytes have the ability to sense mechanical stretch and convert it into intracellular growth signals, which lead to hypertrophy. Mechanical stretch of cardiac myocytes in vitro causes activation of multiple second messenger systems that are very similar to growth factor-induced cell signaling systems. Stretch of neonatal rat cardiac myocytes stimulates a rapid secretion of angiotensin II which, together with other growth factors, mediates stretch-induced hypertrophic responses in vitro. In this review, various cell signaling mechanisms initiated by mechanical stress on cardiac myocytes are summarized with emphasis on potential mechanosensing mechanisms and the relationship between mechanical loading and the cardiac renin-angiotensin system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons.

            The molecular basis of learning and memory has been the object of several recent advances, which have focused attention on calcium-regulated pathways controlling transcription. One of the molecules implicated by pharmacological, biochemical and genetic approaches is the calcium/calmodulin-regulated phosphatase, calcineurin. In lymphocytes, calcineurin responds to specific calcium signals and regulates expression of several immediate early genes by controlling the nuclear import of the NF-ATc family of transcription factors. Here we show that NF-ATc4/NF-AT3 in hippocampal neurons can rapidly translocate from cytoplasm to nucleus and activate NF-AT-dependent transcription in response to electrical activity or potassium depolarization. The calcineurin-mediated translocation is critically dependent on calcium entry through L-type voltage-gated calcium channels. GSK-3 can phosphorylate NF-ATc4, promoting its export from the nucleus and antagonizing NF-ATc4-dependent transcription. Furthermore, we show that induction of the inositol 1,4,5-trisphosphate receptor type 1 is controlled by the calcium/calcineurin/NF-ATc pathway. This provides a new perspective on the function of calcineurin in the central nervous system and indicates that NF-AT-mediated gene expression may be involved in the induction of hippocampal synaptic plasticity and memory formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways.

              Cardiac hypertrophy is a well known response to increased hemodynamic load. Mechanical stress is considered to be the trigger inducing a growth response in the overloaded myocardium. Furthermore, mechanical stress induces the release of growth-promoting factors, such as angiotensin II, endothelin-1, and transforming growth factor-beta, which provide a second line of growth induction. In this review, we will focus on the primary effects of mechanical stress: how mechanical stress may be sensed, and which signal transduction pathways may couple mechanical stress to modulation of gene expression, and to increased protein synthesis. Mechanical stress may be coupled to intracellular signals that are responsible for the hypertrophic response via integrins and the cytoskeleton or via sarcolemmal proteins, such as phospholipases, ion channels and ion exchangers. The signal transduction pathways that may be involved belong to two groups: (1) the mitogen-activated protein kinases (MAPK) pathway; and (2) the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. The MAPK pathway can be subdivided into the extracellular-regulated kinase (ERK), the c-Jun N-terminal kinase (JNK), and the 38-kDa MAPK (p38 MAPK) pathway. Alternatively, the stress signal may be directly submitted to the nucleus via the cytoskeleton without the involvement of signal transduction pathways. Finally, by promoting an increase in intracellular Ca2+ concentration stretch may stimulate the calcium/calmodulin-dependent phosphatase calcineurin, a novel hypertrophic signalling pathway.
                Bookmark

                Author and article information

                Journal
                CRD
                Cardiology
                10.1159/issn.0008-6312
                Cardiology
                S. Karger AG
                0008-6312
                1421-9751
                2007
                May 2007
                29 January 2007
                : 107
                : 4
                : 281-290
                Affiliations
                aLaboratory of Muscle Research and Molecular Cardiology, Department of Internal Medicine III, bInstitute of Vegetative Physiology, University of Cologne, Cologne, and cMedical Clinic II, Klinikum Weiden, Weiden, Germany
                Article
                99063 Cardiology 2007;107:281–290
                10.1159/000099063
                17264507
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 8, References: 40, Pages: 10
                Categories
                Original Research

                Comments

                Comment on this article