5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenetic Reconstruction Based on Synteny Block and Gene Adjacencies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene order can be used as an informative character to reconstruct phylogenetic relationships between species independently from the local information present in gene/protein sequences. PhyChro is a reconstruction method based on chromosomal rearrangements, applicable to a wide range of eukaryotic genomes with different gene contents and levels of synteny conservation. For each synteny breakpoint issued from pairwise genome comparisons, the algorithm defines two disjoint sets of genomes, named partial splits, respectively, supporting the two block adjacencies defining the breakpoint. Considering all partial splits issued from all pairwise comparisons, a distance between two genomes is computed from the number of partial splits separating them. Tree reconstruction is achieved through a bottom-up approach by iteratively grouping sister genomes minimizing genome distances. PhyChro estimates branch lengths based on the number of synteny breakpoints and provides confidence scores for the branches. PhyChro performance is evaluated on two data sets of 13 vertebrates and 21 yeast genomes by using up to 130,000 and 179,000 breakpoints, respectively, a scale of genomic markers that has been out of reach until now. PhyChro reconstructs very accurate tree topologies even at known problematic branching positions. Its robustness has been benchmarked for different synteny block reconstruction methods. On simulated data PhyChro reconstructs phylogenies perfectly in almost all cases, and shows the highest accuracy compared with other existing tools. PhyChro is very fast, reconstructing the vertebrate and yeast phylogenies in <15 min.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular phylogenetics: principles and practice.

          Phylogenies are important for addressing various biological questions such as relationships among species or genes, the origin and spread of viral infection and the demographic changes and migration patterns of species. The advancement of sequencing technologies has taken phylogenetic analysis to a new height. Phylogenies have permeated nearly every branch of biology, and the plethora of phylogenetic methods and software packages that are now available may seem daunting to an experimental biologist. Here, we review the major methods of phylogenetic analysis, including parsimony, distance, likelihood and Bayesian methods. We discuss their strengths and weaknesses and provide guidance for their use.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mitochondrial genomes: anything goes.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts.

              A whole-genome duplication occurred in a shared ancestor of the yeast species Saccharomyces cerevisiae, Saccharomyces castellii and Candida glabrata. Here we trace the subsequent losses of duplicated genes, and show that the pattern of loss differs among the three species at 20% of all loci. For example, several transcription factor genes, including STE12, TEC1, TUP1 and MCM1, are single-copy in S. cerevisiae but are retained in duplicate in S. castellii and C. glabrata. At many loci, different species have lost different members of a duplicated gene pair, so that 4-7% of single-copy genes compared between any two species are not orthologues. This pattern of gene loss provides strong evidence for speciation through a version of the Bateson-Dobzhansky-Muller mechanism, in which the loss of alternative copies of duplicated genes leads to reproductive isolation. We show that the lineages leading to the three species diverged shortly after the whole-genome duplication, during a period of precipitous gene loss. The set of loci at which single-copy paralogues are retained is biased towards genes involved in ribosome biogenesis and genes that evolve slowly, consistent with the hypothesis that reciprocal gene loss is more likely to occur between duplicated genes that are functionally indistinguishable. We propose a simple, unified model in which a single mechanism--passive gene loss-enabled whole--genome duplication and led to the rapid emergence of new yeast species.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                September 2020
                08 May 2020
                08 May 2020
                : 37
                : 9
                : 2747-2762
                Affiliations
                [m1 ] Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative—UMR 7238, Paris, France , Paris, France
                [m2 ] Institut Universitaire de France , Paris, France
                Author notes
                Corresponding author: E-mail: alessandra.carbone@ 123456lip6.fr .
                Author information
                http://orcid.org/0000-0003-2098-5743
                Article
                msaa114
                10.1093/molbev/msaa114
                7475045
                32384156
                4bd2d07a-9bc9-4fea-a965-04b47f039c1b
                © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 16
                Categories
                Methods
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01180

                Molecular biology
                phylogenetic tree,chromosomal rearrangement,synteny block,adjacency,breakpoint,parsimony,distance,yeast,vertebrate,split

                Comments

                Comment on this article