46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Xyloglucan endotransglycosylase/hydrolase genes from a susceptible and resistant jute species show opposite expression pattern following Macrophomina phaseolina infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two of the most widely and intensively cultivated jute species, Corchorus capsularis and Corchorus olitorius, suffer severely from a stem rot disease caused by the fungus Macrophomina phaseolina. Wild jute species, C. trilocularis, shows resistance to this pathogenic fungus. In this study, the technique of differential display was applied to identify genes which are differentially expressed, under both infected and un-infected conditions, between C. trilocularis and C. olitorius var O-72. Two xyloglucan endotransglycosylase/hydrolase (XTH) genes designated CoXTH1 (from Corchorus olitorius) and CtXTH1 (from C.trilocularis) were identified from each of the two species which show different expression patterns upon fungal infection. A steady rise in the expression of CtXTH1 in response to infection was observed by quantitative real time PCR whereas the expression of CoXTH1 was found to be downregulated. Full length sequences of these two genes were determined using primer based gene walking and RACE PCR. This study confirms the involvement of XTH in molecular interactions between M. phaseolina and jute. However, it remains to be explored whether XTH is an essential component of the signaling pathway involved in plant-fungal interaction.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature.

          The polysaccharide xyloglucan is thought to play an important structural role in the primary cell wall of dicotyledons. Accordingly, there is considerable interest in understanding the biochemical basis and regulation of xyloglucan metabolism, and research over the last 16 years has identified a large family of cell wall proteins that specifically catalyze xyloglucan endohydrolysis and/or endotransglucosylation. However, a confusing and contradictory series of nomenclatures has emerged in the literature, of which xyloglucan endotransglycosylases (XETs) and endoxyloglucan transferases (EXGTs) are just two examples, to describe members of essentially the same class of genes/proteins. The completion of the first plant genome sequencing projects has revealed the full extent of this gene family and so this is an opportune time to resolve the many discrepancies in the database that include different names being assigned to the same gene. Following consultation with members of the scientific community involved in plant cell wall research, we propose a new unifying nomenclature that conveys an accurate description of the spectrum of biochemical activities that cumulative research has shown are catalyzed by these enzymes. Thus, a member of this class of genes/proteins will be referred to as a xyloglucan endotransglucosylase/hydrolase (XTH). The two known activities of XTH proteins are referred to enzymologically as xyloglucan endotransglucosylase (XET, which is hereby re-defined) activity and xyloglucan endohydrolase (XEH) activity. This review provides a summary of the biochemical and functional diversity of XTHs, including an overview of the structure and organization of the Arabidopsis XTH gene family, and highlights the potentially important roles that XTHs appear to play in numerous examples of plant growth and development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell wall-associated mechanisms of disease resistance and susceptibility.

            The plant cuticle and cell wall separate microbial pathogens from the products of plant metabolism. While microbial pathogens try to breach these barriers for colonization, plants respond to attempted penetration by a battery of wall-associated defense reactions. Successful pathogens circumvent or suppress plant nonself recognition and basal defense during penetration and during microbial reproduction. Additionally, accommodation of fungal infection structures within intact cells requires host reprogramming. Recent data highlight that both early plant defense to fungal penetration and host reprogramming for susceptibility can function at the host cell periphery. Genetic evidence has also widened our understanding of how fungal pathogens are restricted during penetration at the plant cell wall. This review summarizes the current view of how plants monitor and model their cell periphery during interaction with microbial invaders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.

              Effective methods are needed to identify and isolate those genes that are differentially expressed in various cells or under altered conditions. This report describes a method to separate and clone individual messenger RNAs (mRNAs) by means of the polymerase chain reaction. The key element is to use a set of oligonucleotide primers, one being anchored to the polyadenylate tail of a subset of mRNAs, the other being short and arbitrary in sequence so that it anneals at different positions relative to the first primer. The mRNA subpopulations defined by these primer pairs were amplified after reverse transcription and resolved on a DNA sequencing gel. When multiple primer sets were used, reproducible patterns of amplified complementary DNA fragments were obtained that showed strong dependence on sequence specificity of either primer.
                Bookmark

                Author and article information

                Journal
                Commun Integr Biol
                Commun Integr Biol
                CIB
                Communicative & Integrative Biology
                Landes Bioscience
                1942-0889
                01 November 2012
                01 November 2012
                : 5
                : 6
                : 598-606
                Affiliations
                [1 ]Molecular Biology Lab; Department of Biochemistry and Molecular Biology; University of Dhaka; Dhaka, Bangladesh
                [2 ]Bangladesh Jute Research Institute; Dhaka, Bangladesh
                [3 ]Department of Genetic Engineering and Biotechnology; University of Dhaka; Dhaka, Bangladesh
                Author notes
                [†]

                These authors contributed equally to this work.

                [* ]Correspondence to: Haseena Khan; Email: haseena@ 123456univdhaka.edu
                Article
                2012CIB0050R 21422
                10.4161/cib.21422
                3541328
                23336031
                4bd82150-c608-4138-a158-956e6e79c04e
                Copyright © 2012 Landes Bioscience

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                Categories
                Research Paper

                Molecular biology
                macrophomina phaseolina,differential display,xth,jute
                Molecular biology
                macrophomina phaseolina, differential display, xth, jute

                Comments

                Comment on this article