12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of Resistance of Ebola Virus Glycoprotein-Driven Entry Against MDL28170, An Inhibitor of Cysteine Cathepsins

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ebola virus (EBOV) infection can cause severe and frequently fatal disease in human patients. The EBOV glycoprotein (GP) mediates viral entry into host cells. For this, GP depends on priming by the pH-dependent endolysosomal cysteine proteases cathepsin B (CatB) and, to a lesser degree, cathepsin L (CatL), at least in most cell culture systems. However, there is limited information on whether and how EBOV-GP can acquire resistance to CatB/L inhibitors. Here, we addressed this question using replication-competent vesicular stomatitis virus bearing EBOV-GP. Five passages of this virus in the presence of the CatB/CatL inhibitor MDL28170 were sufficient to select resistant viral variants and sequencing revealed that all GP sequences contained a V37A mutation, which, in the context of native GP, is located in the base of the GP surface unit. In addition, some GP sequences harbored mutation S195R in the receptor-binding domain. Finally, mutational analysis demonstrated that V37A but not S195R conferred resistance against MDL28170 and other CatB/CatL inhibitors. Collectively, a single amino acid substitution in GP is sufficient to confer resistance against CatB/CatL inhibitors, suggesting that usage of CatB/CatL inhibitors for antiviral therapy may rapidly select for resistant viral variants.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies.

          The novel human coronavirus EMC (hCoV-EMC), which recently emerged in Saudi Arabia, is highly pathogenic and could pose a significant threat to public health. The elucidation of hCoV-EMC interactions with host cells is critical to our understanding of the pathogenesis of this virus and to the identification of targets for antiviral intervention. Here we investigated the viral and cellular determinants governing hCoV-EMC entry into host cells. We found that the spike protein of hCoV-EMC (EMC-S) is incorporated into lentiviral particles and mediates transduction of human cell lines derived from different organs, including the lungs, kidneys, and colon, as well as primary human macrophages. Expression of the known coronavirus receptors ACE2, CD13, and CEACAM1 did not facilitate EMC-S-driven transduction, suggesting that hCoV-EMC uses a novel receptor for entry. Directed protease expression and inhibition analyses revealed that TMPRSS2 and endosomal cathepsins activate EMC-S for virus-cell fusion and constitute potential targets for antiviral intervention. Finally, EMC-S-driven transduction was abrogated by serum from an hCoV-EMC-infected patient, indicating that EMC-S-specific neutralizing antibodies can be generated in patients. Collectively, our results indicate that hCoV-EMC uses a novel receptor for protease-activated entry into human cells and might be capable of extrapulmonary spread. In addition, they define TMPRSS2 and cathepsins B and L as potential targets for intervention and suggest that neutralizing antibodies contribute to the control of hCoV-EMC infection.
            • Record: found
            • Abstract: found
            • Article: not found

            Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein.

            Using chemical inhibitors and small interfering RNA (siRNA), we have confirmed roles for cathepsin B (CatB) and cathepsin L (CatL) in Ebola virus glycoprotein (GP)-mediated infection. Treatment of Ebola virus GP pseudovirions with CatB and CatL converts GP1 from a 130-kDa to a 19-kDa species. Virus with 19-kDa GP1 displays significantly enhanced infection and is largely resistant to the effects of the CatB inhibitor and siRNA, but it still requires a low-pH-dependent endosomal/lysosomal function. These and other results support a model in which CatB and CatL prime GP by generating a 19-kDa intermediate that can be acted upon by an as yet unidentified endosomal/lysosomal enzyme to trigger fusion.
              • Record: found
              • Abstract: found
              • Article: not found

              Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors - Preliminary Report.

              Background Ebola virus has been detected in the semen of men after their recovery from Ebola virus disease (EVD), but little information is available about its prevalence or the duration of its persistence. We report the initial findings of a pilot study involving survivors of EVD in Sierra Leone. Methods We enrolled a convenience sample of 100 male survivors of EVD in Sierra Leone, at different times after their recovery from EVD, and recorded self-reported information about sociodemographic characteristics, the EVD episode, and health status. Semen specimens obtained at baseline were tested by means of a quantitative reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay with the use of the target-gene sequences of NP and VP40. Results A total of 93 participants provided an initial semen specimen for analysis, of whom 46 (49%) had positive results on quantitative RT-PCR. Ebola virus RNA was detected in the semen of all 9 men who had a specimen obtained 2 to 3 months after the onset of EVD, in the semen of 26 of 40 (65%) who had a specimen obtained 4 to 6 months after onset, and in the semen of 11 of 43 (26%) who had a specimen obtained 7 to 9 months after onset; the results for 1 participant who had a specimen obtained at 10 months were indeterminate. The median cycle-threshold values (for which higher values indicate lower RNA levels) were 32.0 with the NP gene target and 31.1 with the VP40 gene target for specimens obtained at 2 to 3 months, 34.5 and 32.3, respectively, for specimens obtained at 4 to 6 months, and 37.0 and 35.6, respectively, for specimens obtained at 7 to 9 months. Conclusions These data showed the persistence of Ebola virus RNA in semen and declining persistence with increasing months since the onset of EVD. We do not yet have data on the extent to which positivity on RT-PCR is associated with virus infectivity. Although cases of suspected sexual transmission of Ebola have been reported, they are rare; hence the risk of sexual transmission of the Ebola virus is being investigated. (Funded by the World Health Organization and others.).

                Author and article information

                Journal
                Pathogens
                Pathogens
                pathogens
                Pathogens
                MDPI
                2076-0817
                15 October 2019
                December 2019
                : 8
                : 4
                : 192
                Affiliations
                [1 ]Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany; s.kaufmann02@ 123456stud.uni-goettingen.de (S.V.K.); carina.fischer01@ 123456stud.uni-goettingen.de (C.F.); wiebke.maurer@ 123456stud.uni-goettingen.de (W.M.); amoldenhauer@ 123456dpz.eu (A.-S.M.)
                [2 ]Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
                Author notes
                [* ]Correspondence: mhoffmann@ 123456dpz.eu (M.H.); spoehlmann@ 123456dpz.eu (S.P.)
                Author information
                https://orcid.org/0000-0003-4603-7696
                https://orcid.org/0000-0001-6086-9136
                Article
                pathogens-08-00192
                10.3390/pathogens8040192
                6963435
                31618932
                4be144ce-3e72-4fca-8a66-e58db04bf344
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 August 2019
                : 12 October 2019
                Categories
                Article

                ebola,cathepsin,glycoprotein
                ebola, cathepsin, glycoprotein

                Comments

                Comment on this article

                Related Documents Log