114
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Three Decades of Farmed Escapees in the Wild: A Spatio-Temporal Analysis of Atlantic Salmon Population Genetic Structure throughout Norway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, F ST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global F ST = 0.038) and contemporary data sets (global F ST = 0.030), although significantly reduced with time ( P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global F ST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Detecting immigration by using multilocus genotypes.

          Immigration is an important force shaping the social structure, evolution, and genetics of populations. A statistical method is presented that uses multilocus genotypes to identify individuals who are immigrants, or have recent immigrant ancestry. The method is appropriate for use with allozymes, microsatellites, or restriction fragment length polymorphisms (RFLPs) and assumes linkage equilibrium among loci. Potential applications include studies of dispersal among natural populations of animals and plants, human evolutionary studies, and typing zoo animals of unknown origin (for use in captive breeding programs). The method is illustrated by analyzing RFLP genotypes in samples of humans from Australian, Japanese, New Guinean, and Senegalese populations. The test has power to detect immigrant ancestors, for these data, up to two generations in the past even though the overall differentiation of allele frequencies among populations is low.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation.

            Here we critically review the scale and extent of adaptive genetic variation in Atlantic salmon (Salmo salar L.), an important model system in evolutionary and conservation biology that provides fundamental insights into population persistence, adaptive response and the effects of anthropogenic change. We consider the process of adaptation as the end product of natural selection, one that can best be viewed as the degree of matching between phenotype and environment. We recognise three potential sources of adaptive variation: heritable variation in phenotypic traits related to fitness, variation at the molecular level in genes influenced by selection, and variation in the way genes interact with the environment to produce phenotypes of varying plasticity. Of all phenotypic traits examined, variation in body size (or in correlated characters such as growth rates, age of seaward migration or age at sexual maturity) generally shows the highest heritability, as well as a strong effect on fitness. Thus, body size in Atlantic salmon tends to be positively correlated with freshwater and marine survival, as well as with fecundity, egg size, reproductive success, and offspring survival. By contrast, the fitness implications of variation in behavioural traits such as aggression, sheltering behaviour, or timing of migration are largely unknown. The adaptive significance of molecular variation in salmonids is also scant and largely circumstantial, despite extensive molecular screening on these species. Adaptive variation can result in local adaptations (LA) when, among other necessary conditions, populations live in patchy environments, exchange few or no migrants, and are subjected to differential selective pressures. Evidence for LA in Atlantic salmon is indirect and comes mostly from ecological correlates in fitness-related traits, the failure of many translocations, the poor performance of domesticated stocks, results of a few common-garden experiments (where different populations were raised in a common environment in an attempt to dissociate heritable from environmentally induced phenotypic variation), and the pattern of inherited resistance to some parasites and diseases. Genotype x environment interactions occurr for many fitness traits, suggesting that LA might be important. However, the scale and extent of adaptive variation remains poorly understood and probably varies, depending on habitat heterogeneity, environmental stability and the relative roles of selection and drift. As maladaptation often results from phenotype-environment mismatch, we argue that acting as if populations are not locally adapted carries a much greater risk of mismanagement than acting under the assumption for local adaptations when there are none. As such, an evolutionary approach to salmon conservation is required, aimed at maintaining the conditions necessary for natural selection to operate most efficiently and unhindered. This may require minimising alterations to native genotypes and habitats to which populations have likely become adapted, but also allowing for population size to reach or extend beyond carrying capacity to encourage competition and other sources of natural mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extent and scale of local adaptation in salmonid fishes: review and meta-analysis.

              What is the extent and scale of local adaptation (LA)? How quickly does LA arise? And what is its underlying molecular basis? Our review and meta-analysis on salmonid fishes estimates the frequency of LA to be ∼55-70%, with local populations having a 1.2 times average fitness advantage relative to foreign populations or to their performance in new environments. Salmonid LA is evident at a variety of spatial scales (for example, few km to>1000 km) and can manifest itself quickly (6-30 generations). As the geographic scale between populations increases, LA is generally more frequent and stronger. Yet the extent of LA in salmonids does not appear to differ from that in other assessed taxa. Moreover, the frequency with which foreign salmonid populations outperform local populations (∼23-35%) suggests that drift, gene flow and plasticity often limit or mediate LA. The relatively few studies based on candidate gene and genomewide analyses have identified footprints of selection at both small and large geographical scales, likely reflecting the specific functional properties of loci and the associated selection regimes (for example, local niche partitioning, pathogens, parasites, photoperiodicity and seasonal timing). The molecular basis of LA in salmonids is still largely unknown, but differential expression at the same few genes is implicated in the convergent evolution of certain phenotypes. Collectively, future research will benefit from an integration of classical and molecular approaches to understand: (i) species differences and how they originate, (ii) variation in adaptation across scales, life stages, population sizes and environmental gradients, and (iii) evolutionary responses to human activities.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                15 August 2012
                17 August 2012
                : 7
                : 8
                : e43129
                Affiliations
                [1 ]Section of Population Genetics and Ecology, Institute of Marine Research, Bergen, Norway
                [2 ]Dept of Animal Biology, Plant Biology and Ecology, University of A Coruña, Spain
                University of Otago, New Zealand
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: kag øs vw. Performed the experiments: kag øs vw ages. Analyzed the data: kag vw mq fb. Contributed reagents/materials/analysis tools: kag vw mq fb ages. Wrote the paper: kag mq vw fb ages øs.

                Article
                PONE-D-12-07070
                10.1371/journal.pone.0043129
                3419752
                22916215
                4be2b8ad-56eb-4922-a75a-697ec14d3244
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 February 2012
                : 17 July 2012
                Page count
                Pages: 18
                Funding
                This study is financed by the Norwegian Minitry of Fisheries. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Aquaculture
                Fish Farming
                Biology
                Ecology
                Evolutionary Ecology
                Population Ecology
                Evolutionary Biology
                Population Genetics
                Gene Flow
                Gene Pool
                Genetic Drift
                Natural Selection
                Genetics
                Population Genetics
                Effective Population Size
                Marine Biology
                Fisheries Science

                Uncategorized
                Uncategorized

                Comments

                Comment on this article