• Record: found
  • Abstract: found
  • Article: found
Is Open Access

Non-Enzymatic Electrochemical Sensing of Malathion Pesticide in Tomato and Apple Samples Based on Gold Nanoparticles-Chitosan-Ionic Liquid Hybrid Nanocomposite

Read this article at

      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


      Malathion (MLT) is an organophosphorous type pesticide and having seriously high toxicity and electrochemical platforms for rapid, simple, inexpensive and sensitive determination of pesticides is still a special concern. This paper describes a simple preparation of a composite film consisting of ionic liquid (IL), chitosan (CS) and electrochemically synthesized gold nanoparticles (AuNPs) on single use pencil graphite electrodes (PGEs). The microscopic and electrochemical characterization of AuNP-CS-IL/PGE was studied using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. This fabricated surface was then explored for the first time as a sensing matrix for the non-enzymatic electrochemical sensing of malathion by cyclic voltammetry and square wave voltammetry measurements. The proposed AuNP-CS-IL/PGE showed excellent characteristics and possessed remarkable affinity for malathion. The voltammetric current response exhibited two linear dynamic ranges, 0.89–5.94 nM and 5.94–44.6 nM reflecting two binding sites, with a detection limit of 0.68 nM. The method was applied in real sample analysis of apple and tomato. The results demonstrate the feasibility of AuNP-CS-IL-modified electrodes for simple, fast, ultrasensitive and inexpensive detection of MLT.

      Related collections

      Most cited references 32

      • Record: found
      • Abstract: found
      • Article: not found

      Preparation and characterization of metal-chitosan nanocomposites.

      Various metal-chitosan nanocomposites were synthesized, including silver (Ag), gold (Au), platinum (Pt), and palladium (Pd) in aqueous solutions. Metal nanoparticles were formed by reduction of corresponding metal salts with NaBH4 in the presence of chitosan. And chitosan molecules adsorbing onto the surface of as-prepared metal nanoparticles formed the corresponding metal-chitosan nanocomposites. Transmission electron microscopy (TEM) images and UV-vis spectra of the nanocomposites revealed the presence of metal nanoparticles. Comparison of all the resulting particles size, it shows that silver nanoparticles are much larger than others (Au, Pt and Pd). In addition, the difference in particles size leads to develop different morphologies in the films cast from prepared metal-chitosan nanocomposites. Polarized optical microscopy (POM) images show a batonet-like structure for Ag-chitosan nanocomposites film, while for the films cast from other metal (Au, Pt, and Pd)-chitosan nanocomposites, some branched-like structures with a few differences among them were observed under POM observation.
        • Record: found
        • Abstract: not found
        • Article: not found

        Elementary steps of electrochemical oxidation of single-crystal planes of Au—I. Chemical basis of processes involving geometry of anions and the electrode surfaces

          • Record: found
          • Abstract: found
          • Article: not found

          Ionic liquid-modified materials for solid-phase extraction and separation: a review.

          In recent years, materials science has propelled to the research forefront. Ionic liquids with unique and fascinating properties have also left their footprints to the developments of materials science during the last years. In this review we highlight some of their recent advances and provide an overview at the current status of ionic liquid-modified materials applied in solid-phase extraction, liquid and gas chromatography and capillary electrochromatography with reference to recent applications. In addition, the potential of ionic liquids in the modification of capillary inner wall in capillary electrophoresis is demonstrated. The main target material modified with ionic liquids is silica, but polymers and monoliths have recently joined the studies. Although imidazolium is still clearly the most commonly used ionic liquid for the covalently modification of materials, the exploitation of pyridinium and phosphonium will most probably increase in the future.

            Author and article information

            Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Beytepe-Ankara, Turkey; gbolat@
            Author notes
            [* ]Correspondence: sabaci@ ; Tel.: +90-312-780-7919
            Sensors (Basel)
            Sensors (Basel)
            Sensors (Basel, Switzerland)
            05 March 2018
            March 2018
            : 18
            : 3
            29510525 5876763 10.3390/s18030773 sensors-18-00773
            © 2018 by the authors.

            Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (



            Comment on this article