9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      GYY4137 Attenuates Sodium Deoxycholate-Induced Intestinal Barrier Injury Both In Vitro and In Vivo

      research-article
      , , , ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Substantial studies have demonstrated that an elevated concentration of deoxycholic acid (DCA) in the colonic lumen may play a critical role in the pathogenesis of intestinal barrier dysfunction and inflammatory bowel disease (IBD). The purpose of this study was to investigate the protective effects of GYY4137, as a novel and synthetic H 2S donor, on the injury of intestinal barrier induced by sodium deoxycholate (SDC) both in vivo and in vitro.

          Methods

          In this study, Caco-2 monolayers and mouse models with high SDC concentration in the lumen were used to study the effect of GYY4137 on intestinal barrier dysfunction induced by SDC and its underlying mechanisms.

          Results

          In Caco-2 monolayers, a short period of addition of SDC increased the permeability of monolayers obviously, changed distribution of tight junctions (TJs), and improved the phosphorylation level of myosin light chain kinase (MLCK) and myosin light chain (MLC). However, pretreatment with GYY4137 markedly ameliorated the SDC-induced barrier dysfunction. Being injected with GYY4137 could enable mice to resist the SDC-induced injury of the intestinal barrier. Besides, GYY4137 promoted the recovery of the body weight and intestinal barrier histological score of mice with the gavage of SDC. GYY4137 also attenuated the decreased expression level of TJs in mice treated with SDC.

          Conclusion

          Taken together, this research suggests that GYY4137 preserves the intestinal barrier from SDC-induced injury via suppressing the activation of P-MLCK-P-MLC2 signaling pathway and increasing the expression level of tight junctions.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation.

          Hydrogen sulfide (H2S) is increasingly recognized as an important signaling molecule in the cardiovascular and nervous systems. Recently, H2S donors were reported to induce neutrophil apoptosis and to suppress expression of some leukocyte and endothelial adhesion molecules. Using rats, we examined the possibility that H2S is an endogenous regulator of key inflammatory events at the leukocyte-endothelial interface. Via intravital microscopy, we observed that H2S donors (NaHS and Na2S) inhibited aspirin-induced leukocyte adherence in mesenteric venules (ED50 of 5.0 micromol/kg for Na2S), likely via activation of ATP-sensitive K+ (K(ATP)) channels. Inhibition of endogenous H2S synthesis elicited leukocyte adherence. Leukocyte infiltration in an air pouch model was also suppressed by H2S donors (NaHS, Lawesson's reagent, and N-acetylcysteine; ED50 of 42.7, 1.3, and 29.9 micromol/kg, respectively) and exacerbated by inhibition of endogenous H2S synthesis. Carrageenan-induced paw edema was suppressed by H2S donors (NaHS and Na2S; ED50s of 35 and 28 micromol/kg, respectively) to the same extent as by diclofenac and enhanced by an inhibitor of H2S synthesis. Suppression of edema formation by H2S donors was mimicked by a K(ATP) channel agonist and reversed by an antagonist of this channel. These results suggest that endogenous H2S is an important mediator of acute inflammation, acting at the leukocyte-endothelium interface. These findings have important implications for anti-inflammatory drug development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure.

            Epithelial tight junctions form a barrier against passive paracellular flux. This barrier is regulated by complex physiologic and pathophysiologic signals that acutely fine-tune tight junction permeability. Although actomyosin contraction and myosin light chain phosphorylation are clearly involved in some forms of tight junction regulation, the contributions of other signaling events and the role of myosin light chain phosphorylation in this response are poorly understood. Here we ask if activation of myosin light chain kinase alone is sufficient to induce downstream tight junction regulation. We use a confluent polarized intestinal epithelial cell model system in which constitutively active myosin light chain kinase, tMLCK, is expressed using an inducible promoter. tMLCK expression increases myosin light chain phosphorylation, reorganizes perijunctional F-actin, and increases tight junction permeability. TJ proteins ZO-1 and occludin are markedly redistributed, morphologically and biochemically, but effects on claudin-1 and claudin-2 are limited. tMLCK inhibition prevents changes in barrier function and tight junction organization induced by tMLCK expression, suggesting that these events both require myosin light chain phosphorylation. We conclude that myosin light chain phosphorylation alone is sufficient to induce tight junction regulation and provide new insights into the molecular mechanisms that mediate this regulation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis.

              We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), which is a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer-cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components, including amphiregulin, and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial in suppressing leptomeningeal metastasis in these preclinical models.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                13 October 2019
                : 2019
                : 5752323
                Affiliations
                Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi Shiu Street, Beijing 100034, China
                Author notes

                Academic Editor: Christina Pabelick

                Author information
                https://orcid.org/0000-0002-1210-4056
                https://orcid.org/0000-0003-2926-0132
                Article
                10.1155/2019/5752323
                6815576
                4be83088-757a-46b6-a969-1b7910441483
                Copyright © 2019 Zeyang Chen et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 July 2019
                : 10 September 2019
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 8177030343
                Categories
                Research Article

                Comments

                Comment on this article