16
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk Prediction and Assessment: Duration, Infections, and Death Toll of the COVID-19 and Its Impact on China’s Economy

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study first analyzes the national and global infection status of the Coronavirus Disease that emerged in 2019 (COVID-19). It then uses the trend comparison method to predict the inflection point and Key Point of the COVID-19 virus by comparison with the severe acute respiratory syndrome (SARS) graphs, followed by using the Autoregressive Integrated Moving Average model, Autoregressive Moving Average model, Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors, and Holt Winter’s Exponential Smoothing to predict infections, deaths, and GDP in China. Finally, it discusses and assesses the impact of these results. This study argues that even if the risks and impacts of the epidemic are significant, China’s economy will continue to maintain steady development.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Therapeutic options for the 2019 novel coronavirus (2019-nCoV)

            • Record: found
            • Abstract: found
            • Article: not found

            Clinical characteristics of 2019 novel coronavirus infection in China

            Background: Since December 2019, acute respiratory disease (ARD) due to 2019 novel coronavirus (2019-nCoV) emerged in Wuhan city and rapidly spread throughout China. We sought to delineate the clinical characteristics of these cases. Methods: We extracted the data on 1,099 patients with laboratory-confirmed 2019-nCoV ARD from 552 hospitals in 31 provinces/provincial municipalities through January 29th, 2020. Results: The median age was 47.0 years, and 41.90% were females. Only 1.18% of patients had a direct contact with wildlife, whereas 31.30% had been to Wuhan and 71.80% had contacted with people from Wuhan. Fever (87.9%) and cough (67.7%) were the most common symptoms. Diarrhea is uncommon. The median incubation period was 3.0 days (range, 0 to 24.0 days). On admission, ground-glass opacity was the typical radiological finding on chest computed tomography (50.00%). Significantly more severe cases were diagnosed by symptoms plus reverse-transcriptase polymerase-chain-reaction without abnormal radiological findings than non-severe cases (23.87% vs. 5.20%, P<0.001). Lymphopenia was observed in 82.1% of patients. 55 patients (5.00%) were admitted to intensive care unit and 15 (1.36%) succumbed. Severe pneumonia was independently associated with either the admission to intensive care unit, mechanical ventilation, or death in multivariate competing-risk model (sub-distribution hazards ratio, 9.80; 95% confidence interval, 4.06 to 23.67). Conclusions: The 2019-nCoV epidemic spreads rapidly by human-to-human transmission. Normal radiologic findings are present among some patients with 2019-nCoV infection. The disease severity (including oxygen saturation, respiratory rate, blood leukocyte/lymphocyte count and chest X-ray/CT manifestations) predict poor clinical outcomes.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm

              Background Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. Methods We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Results Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Conclusions Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.

                Author and article information

                Journal
                Journal of Risk and Financial Management
                JRFM
                MDPI AG
                1911-8074
                April 2020
                April 03 2020
                : 13
                : 4
                : 66
                Article
                10.3390/jrfm13040066
                4bef88ab-7213-4bb7-a83a-00bbe04daa4e
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log