16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The flower-like CuS hollow microspheres exhibit the advantages of strong absorption, thin thickness, wide absorption band width and lightweight.

          Abstract

          Flower-like CuS hollow microspheres composed of nanoflakes have been successfully prepared via a facile solvothermal method. The crystal structure, morphology and microwave absorption properties of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and a network analyser. The effects of reaction temperature, concentration of the reagents and reaction time on the structures and morphologies of the CuS products were investigated using XRD and SEM techniques. A plausible mechanism for the formation of hollow architectures related to Ostwald ripening was proposed. The CuS/paraffin composite containing 30 wt% CuS hollow microspheres shows the best microwave absorption properties compared with other CuS/paraffin composites. The minimum reflection loss of −31.5 dB can be observed at 16.7 GHz and reflection loss below −10 dB is 3.6 GHz (14.4–18.0 GHz) with a thickness of only 1.8 mm. The effective absorption (below −10 dB, 90% microwave absorption) bandwidth can be tuned between 6.2 GHz and 18.0 GHz for the absorber with a thin thickness in the range 1.5–4.0 mm. The results indicate that the microwave absorption properties of flower-like CuS hollow microspheres possess the advantages of broad bandwidth, strong absorption, lightweight and thin thickness are superior to those of other absorbing materials.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Laminated magnetic graphene with enhanced electromagnetic wave absorption properties

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanostructured graphene/Fe₃O₄ incorporated polyaniline as a high performance shield against electromagnetic pollution.

            The development of high-performance shielding materials against electromagnetic pollution requires mobile charge carriers and magnetic dipoles. Herein, we meet the challenge by building a three-dimensional (3D) nanostructure consisting of chemically modified graphene/Fe3O4(GF) incorporated polyaniline. Intercalated GF was synthesized by the in situ generation of Fe3O4 nanoparticles in a graphene oxide suspension followed by hydrazine reduction, and further in situ polymerization with aniline to form a polyaniline composite. Spectroscopic analysis demonstrates that the presence of GF hybrid structures facilitates strong polarization due to the formation of a solid-state charge-transfer complex between graphene and polyaniline. This provides proper impedance matching and higher dipole interaction, which leads to the high microwave absorption properties. The higher dielectric loss (ε'' = 30) and magnetic loss (μ'' = 0.2) contribute to the microwave absorption value of 26 dB (>99.7% attenuation), which was found to depend on the concentration of GF in the polyaniline matrix. Moreover, the interactions between Fe3O4, graphene and polyaniline are responsible for superior material characteristics, such as excellent environmental (chemical and thermal) degradation stability and good electric conductivity (as high as 260 S m(-1)).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High Permittivity from Defective Multiwalled Carbon Nanotubes in the X-Band

                Bookmark

                Author and article information

                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2015
                2015
                : 3
                : 19
                : 10345-10352
                Article
                10.1039/C5TA00086F
                4bf3cc6c-e01b-4608-893c-086c038b1ff7
                © 2015
                History

                Comments

                Comment on this article