29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clade-age-dependent diversification under high species turnover shapes species richness disparities among tropical rainforest lineages of Bulbophyllum (Orchidaceae)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tropical rainforests (TRFs) harbour almost half of the world’s vascular plant species diversity while covering only about 6–7% of land. However, why species richness varies amongst the Earth’s major TRF regions remains poorly understood. Here we investigate the evolutionary processes shaping continental species richness disparities of the pantropical, epiphytic and mostly TRF-dwelling orchid mega-genus Bulbophyllum ( c. 1948 spp. in total) using diversification analyses based on a time-calibrated molecular phylogeny (including c. 45–50% spp. each from Madagascar, Africa, Neotropics, and 8.4% from the Asia-Pacific region), coupled with ecological niche modelling (ENM) of geographic distributions under present and past (Last Glacial Maximum; LGM) conditions.

          Results

          Our results suggest an early-to-late Miocene scenario of ‘out-of-Asia-Pacific’ origin and progressive, dispersal-mediated diversification in Madagascar, Africa and the Neotropics, respectively. Species richness disparities amongst these four TRF lineages are best explained by a time-for-speciation (i.e. clade age) effect rather than differences in net diversification or diversity-dependent diversification due to present or past spatial-bioclimatic limits. For each well-sampled lineage (Madagascar, Africa, Neotropics), we inferred high rates of speciation and extinction over time (i.e. high species turnover), yet with the origin of most extant species falling into the Quaternary. In contrast to predictions of classical ‘glacial refuge’ theories, all four lineages experienced dramatic range expansions during the LGM.

          Conclusions

          As the Madagascan, African and Neotropical lineages display constant-rate evolution since their origin (early-to-mid-Miocene), Quaternary environmental change might be a less important cause of their high species turnover than intrinsic features generally conferring rapid population turnover in tropical orchids (e.g., epiphytism, specialization on pollinators and mycorrhizal fungi, wind dispersal). Nonetheless, climate-induced range fluctuations during the Quaternary could still have played an influential role in the origination and extinction of Bulbophyllum species in those three, if not in all four TRF regions.

          Electronic supplementary material

          The online version of this article (10.1186/s12862-019-1416-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography.

          A latitudinal gradient in biodiversity has existed since before the time of the dinosaurs, yet how and why this gradient arose remains unresolved. Here we review two major hypotheses for the origin of the latitudinal diversity gradient. The time and area hypothesis holds that tropical climates are older and historically larger, allowing more opportunity for diversification. This hypothesis is supported by observations that temperate taxa are often younger than, and nested within, tropical taxa, and that diversity is positively correlated with the age and area of geographical regions. The diversification rate hypothesis holds that tropical regions diversify faster due to higher rates of speciation (caused by increased opportunities for the evolution of reproductive isolation, or faster molecular evolution, or the increased importance of biotic interactions), or due to lower extinction rates. There is phylogenetic evidence for higher rates of diversification in tropical clades, and palaeontological data demonstrate higher rates of origination for tropical taxa, but mixed evidence for latitudinal differences in extinction rates. Studies of latitudinal variation in incipient speciation also suggest faster speciation in the tropics. Distinguishing the roles of history, speciation and extinction in the origin of the latitudinal gradient represents a major challenge to future research.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography.

              We announce the release of Reconstruct Ancestral State in Phylogenies (RASP), a user-friendly software package for inferring historical biogeography through reconstructing ancestral geographic distributions on phylogenetic trees. RASP utilizes the widely used Statistical-Dispersal Vicariance Analysis (S-DIVA), the Dispersal-Extinction-Cladogenesis (DEC) model (Lagrange), a Statistical DEC model (S-DEC) and BayArea. It provides a graphical user interface (GUI) to specify a phylogenetic tree or set of trees and geographic distribution constraints, draws pie charts on the nodes of a phylogenetic tree to indicate levels of uncertainty, and generates high-quality exportable graphical results. RASP can run on both Windows and Mac OS X platforms. All documentation and source code for RASP is freely available at http://mnh.scu.edu.cn/soft/blog/RASP.
                Bookmark

                Author and article information

                Contributors
                alexandergamisch@gmx.at
                Hans-Peter.Comes@sbg.ac.at
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                24 April 2019
                24 April 2019
                2019
                : 19
                : 93
                Affiliations
                ISNI 0000000110156330, GRID grid.7039.d, Department of Biosciences, , University of Salzburg, ; Hellbrunnerstrasse 34, 5020 Salzburg, Austria
                Author information
                http://orcid.org/0000-0002-9698-4344
                Article
                1416
                10.1186/s12862-019-1416-1
                6480529
                31014234
                4bfb65f8-4161-43fb-8bbb-e18cc94c2280
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 November 2018
                : 31 March 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002428, Austrian Science Fund;
                Award ID: P29371
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Evolutionary Biology
                diversification,ecological niche modelling,orchidaceae,species richness disparity,tropical rainforest,turnover

                Comments

                Comment on this article