21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intrinsic and network mechanisms involved in balanced firing and striatal synchrony during dopamine depletion

      abstract
      1 , , 1
      BMC Neuroscience
      BioMed Central
      Twenty Second Annual Computational Neuroscience Meeting: CNS*2013
      13-18 July 2013

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The input nucleus of the basal ganglia, the striatum, processes cortical inputs in two output streams, called the direct and indirect pathways. Medium Spiny Neurons (MSNs) that express dopamine D1 receptors constitute the direct pathway (D1 MSNs) and MSNs that express dopamine D2 receptors constitute the indirect pathway (D2 MSNs). The two populations of MSNs differ in their intrinsic excitability with D2 MSNs more responsive to somatic current injection [1]. Inhibitory circuits of the striatal network, including feedback inhibition from other MSNs and feedforward inhibition from fast-spiking interneurons (FSIs), modulate this excitability [2,3] to produce balanced firing in response to synaptic input [4]. During dopamine depletion, there is an imbalance in the firing activity and cortico-striatal plasticity between D1 and D2 MSNs, and increased correlation is observed in output structures such as the globus pallidus. Thus, both dopamine and GABA play crucial roles in modulating the activity and properties of these neurons to produce the desired output of the striatum. This study uses computational modeling to investigate the contribution of intrinsic channels and network interactions in modulating the activity and correlation of the striatal network. The network constitutes multi-compartmental models of 500 D1 MSNs, 500 D2 MSNs and 49 FSIs simulated using GENESIS simulation software. The MSNs receive inhibitory input from the other MSNs in the network and from the FSI network. The FSIs are connected to each other by chemical synapses and gap junctions. Similar to experiments, the model D2 MSNs are more excitable than D1 MSNs in response to current injection [1]. Despite this difference, both types of MSNs have similar firing frequencies and latency to spike during up-states in response to synaptic inputs. Removal of either FSI input, or gap junctions between the FSIs, disrupts the balance of firing between D1 and D2 MSNs. In addition, L-type calcium channels are important for balanced firing as blocking these channels or making their conductance equal in D1 and D2 MSNs also disrupts balance of firing. Correlation among MSN is measured in response to a range of cortical input correlation, both in the control and dopamine depleted condition. Simulations reveal that cortical synchrony produces very little increase in striatal synchrony under control conditions, but significantly enhances striatal synchrony in the dopamine depleted condition. This suggests that some of the synchrony in the output structures of the basal ganglia may be caused by enhanced synchrony in the striatum.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: found
          • Article: not found

          Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats.

          The striatum receives massive cortical excitatory inputs and is densely innervated by dopamine. Striatal projection neurons form either the direct or indirect pathways. Models of Parkinson's disease propose that dopaminergic degeneration imbalances both pathways, although direct electrophysiological evidence is lacking. Here, striatal neurons were identified by electrophysiological criteria and Neurobiotin labeling combined with either immunohistochemistry or in situ hybridization. Their spontaneous discharge activity and spike response to cortical stimulation were recorded in vivo in anesthetized rats rendered hemi-parkinsonian by 6-hydroxydopamine. We showed that striatonigral neurons (direct pathway) were inhibited whereas striatopallidal neurons (indirect pathway) were activated by dopaminergic lesion. We also identified, with antidromic stimulations, corticostriatal neurons that preferentially innervate striatonigral or striatopallidal neurons and showed that dopaminergic depletion selectively decreased the spontaneous activity of the former. Therefore, dopamine degeneration induces a cascade of imbalances that spread out of the basal ganglia and affect the whole basal ganglia-thalamo-cortical circuits. Fast-spiking GABA interneurons provide potent feedforward inhibition of striatal projection neurons. We showed here that these interneurons narrowed the time window of the responses of projection neurons to cortical stimulation. In the dopamine-depleted striatum, because the intrinsic activity of these interneurons was not altered, their feedforward inhibition worsened the striatal imbalance. Indeed, the time window of the evoked responses was narrower for striatonigral neurons and wider for striatopallidal neurons. Therefore, after dopaminergic depletion, cortical inputs and GABA interneurons might imbalance striatal projection neurons and represent two novel nondopaminergic mechanisms that might secondarily contribute to the pathophysiology of Parkinson's disease.
            Bookmark

            Author and article information

            Contributors
            Conference
            BMC Neurosci
            BMC Neurosci
            BMC Neuroscience
            BioMed Central
            1471-2202
            2013
            8 July 2013
            : 14
            : Suppl 1
            : P27
            Affiliations
            [1 ]Molecular Neuroscience Department, The Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030 USA
            Article
            1471-2202-14-S1-P27
            10.1186/1471-2202-14-S1-P27
            3704641
            4c0144bd-91b3-4c64-8608-5a9eba0a3379
            Copyright ©2013 Damodaran and Blackwell; licensee BioMed Central Ltd.

            This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Twenty Second Annual Computational Neuroscience Meeting: CNS*2013
            Paris, France
            13-18 July 2013
            History
            Categories
            Poster Presentation

            Neurosciences
            Neurosciences

            Comments

            Comment on this article