+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Gene-Based Therapy for Hypertension – Do Preclinical Data Suggest a Promising Future?


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Many experimental studies have obtained a prolonged control of blood pressure through gene treatment. This consists in the administration of genes coding for vasodilator proteins (the ‘sense’ approach), or of nucleotide sequences that are complementary to the mRNA of vasoconstrictor proteins, which are consequently synthesized in smaller amounts (the ‘antisense’ approach). Examples of the sense approach include the genes encoding endothelial nitric oxide synthase and kallikrein. Examples of the second type of approach are the antisense oligodeoxynucleotides to angiotensin-converting enzyme and endothelin-1. Also, RNA molecules, such as ribozymes and small interfering RNAs, are capable to inhibit RNA function. Whole sense genes are usually administered through viral vectors, while antisense oligonucleotides may be administered with plasmids or liposomes. Both viral and non-viral vectors have advantages and disadvantages. Despite the still persisting limitations, the possibility exists that in the future some forms of genetic treatment will be extended to the clinical setting, allowing a prolonged control of essential hypertension and its end-organ sequelae.

          Related collections

          Most cited references 50

          • Record: found
          • Abstract: found
          • Article: not found

          Hypertension in mice lacking the gene for endothelial nitric oxide synthase.

          Nitric oxide (NO), a potent vasodilator produced by endothelial cells, is thought to be the endothelium-dependent relaxing factor (EDRF) which mediates vascular relaxation in response to acetylcholine, bradykinin and substance P in many vascular beds. NO has been implicated in the regulation of blood pressure and regional blood flow, and also affects vascular smooth-muscle proliferation and inhibits platelet aggregation and leukocyte adhesion. Abnormalities in endothelial production of NO occur in atherosclerosis, diabetes and hypertension. Pharmacological blockade of NO production with arginine analogues such as L-nitroarginine (L-NA) or L-N-arginine methyl ester affects multiple isoforms of nitric oxide synthase (NOS), and so cannot distinguish their physiological roles. To study the role of endothelial NOS (eNOS) in vascular function, we disrupted the gene encoding eNOS in mice. Endothelium-derived relaxing factor activity, as assayed by acetylcholine-induced relaxation, is absent, and the eNOS mutant mice are hypertensive. Thus eNOS mediates basal vasodilation. Responses to NOS blockade in the mutant mice suggest that non-endothelial isoforms of NOS may be involved in maintaining blood pressure.
            • Record: found
            • Abstract: found
            • Article: not found

            RNA interference: From gene silencing to gene-specific therapeutics

            In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
              • Record: found
              • Abstract: found
              • Article: not found

              DNA-based therapeutics and DNA delivery systems: a comprehensive review.

              The past several years have witnessed the evolution of gene medicine from an experimental technology into a viable strategy for developing therapeutics for a wide range of human disorders. Numerous prototype DNA-based biopharmaceuticals can now control disease progression by induction and/or inhibition of genes. These potent therapeutics include plasmids containing transgenes, oligonucleotides, aptamers, ribozymes, DNAzymes, and small interfering RNAs. Although only 2 DNA-based pharmaceuticals (an antisense oligonucleotide formulation, Vitravene, (USA, 1998), and an adenoviral gene therapy treatment, Gendicine (China, 2003), have received approval from regulatory agencies; numerous candidates are in advanced stages of human clinical trials. Selection of drugs on the basis of DNA sequence and structure has a reduced potential for toxicity, should result in fewer side effects, and therefore should eventually yield safer drugs than those currently available. These predictions are based on the high selectivity and specificity of such molecules for recognition of their molecular targets. However, poor cellular uptake and rapid in vivo degradation of DNA-based therapeutics necessitate the use of delivery systems to facilitate cellular internalization and preserve their activity. This review discusses the basis of structural design, mode of action, and applications of DNA-based therapeutics. The mechanisms of cellular uptake and intracellular trafficking of DNA-based therapeutics are examined, and the constraints these transport processes impose on the choice of delivery systems are summarized. Finally, the development of some of the most promising currently available DNA delivery platforms is discussed, and the merits and drawbacks of each approach are evaluated.

                Author and article information

                S. Karger AG
                June 2007
                12 September 2006
                : 108
                : 1
                : 40-47
                aDepartment of Internal Medicine and Aging, S. Orsola-Malpighi Hospital, and bDepartment of Internal Medicine, Cardioangiology, Hepatology, University of Bologna, Bologna, Italy
                95688 Cardiology 2007;108:40–47
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Tables: 2, References: 77, Pages: 8


                Comment on this article