75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AUF1 contributes to Cryptochrome1 mRNA degradation and rhythmic translation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, we investigated the 3′ untranslated region (UTR) of the mouse core clock gene cryptochrome 1 ( Cry1) at the post-transcriptional level, particularly its translational regulation. Interestingly, the 3′UTR of Cry1 mRNA decreased its mRNA levels but increased protein amounts. The 3′UTR is widely known to function as a cis-acting element of mRNA degradation. The 3′UTR also provides a binding site for microRNA and mainly suppresses translation of target mRNAs. We found that AU-rich element RNA binding protein 1 (AUF1) directly binds to the Cry1 3′UTR and regulates translation of Cry1 mRNA. AUF1 interacted with eukaryotic translation initiation factor 3 subunit B and also directly associated with ribosomal protein S3 or ribosomal protein S14, resulting in translation of Cry1 mRNA in a 3′UTR-dependent manner. Expression of cytoplasmic AUF1 and binding of AUF1 to the Cry1 3′UTR were parallel to the circadian CRY1 protein profile. Our results suggest that the 3′UTR of Cry1 is important for its rhythmic translation, and AUF1 bound to the 3′UTR facilitates interaction with the 5′ end of mRNA by interacting with translation initiation factors and recruiting the 40S ribosomal subunit to initiate translation of Cry1 mRNA.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Posttranslational mechanisms regulate the mammalian circadian clock.

          We have examined posttranslational regulation of clock proteins in mouse liver in vivo. The mouse PERIOD proteins (mPER1 and mPER2), CLOCK, and BMAL1 undergo robust circadian changes in phosphorylation. These proteins, the cryptochromes (mCRY1 and mCRY2), and casein kinase I epsilon (CKIepsilon) form multimeric complexes that are bound to DNA during negative transcriptional feedback. CLOCK:BMAL1 heterodimers remain bound to DNA over the circadian cycle. The temporal increase in mPER abundance controls the negative feedback interactions. Analysis of clock proteins in mCRY-deficient mice shows that the mCRYs are necessary for stabilizing phosphorylated mPER2 and for the nuclear accumulation of mPER1, mPER2, and CKIepsilon. We also provide in vivo evidence that casein kinase I delta is a second clock relevant kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circadian rhythms from flies to human.

            In this era of jet travel, our body 'remembers' the previous time zone, such that when we travel, our sleep wake pattern, mental alertness, eating habits and many other physiological processes temporarily suffer the consequences of time displacement until we adjust to the new time zone. Although the existence of a circadian clock in humans had been postulated for decades, an understanding of the molecular mechanisms has required the full complement of research tools. To gain the initial insights into circadian mechanisms, researchers turned to genetically tractable model organisms such as Drosophila.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of translational control

              Key Points Translational regulation can be global or mRNA specific, and most examples of translational regulation that have been described so far affect the rate-limiting initiation step. Global control of translation is frequently exerted by regulating the phosphorylation or availability of initiation factors. Two of the most well-known examples are the regulation of eukaryotic initiation factor (eIF)4E availability by 4E-binding proteins (4E-BPs), and the modulation of the levels of active ternary complex by eIF2α phosphorylation. mRNA-specific translational control is driven by RNA sequences and/or structures that are commonly located in the untranslated regions of the transcript. These features are usually recognized by regulatory proteins or micro RNAs (miRNAs). Quasi-circularization of mRNAs can be mediated by the cap structure and the poly(A) tail via the eIF4E–eIF4G–polyA-binding-protein (PABP) interaction. Such interactions between the 5′ and the 3′ ends of mRNAs could provide a spatial framework for the action of regulatory factors that bind to the 3′ untranslated region (UTR). However, other forms of 5′–3′-end interactions are likely to occur as well. Many regulatory proteins target the stable association of the small ribosomal subunit with the mRNA. These factors function by steric hindrance (for example, iron-regulatory protein; IRP), by interfering with the eIF4F complex (for example, Maskin, Bicoid, Cup) or by as-yet-unknown, distinct mechanisms to control translation initiation (sex-lethal; SXL). Other regulatory molecules modulate the joining of the large ribosomal subunit (hnRNP K and E1) or, potentially, post-initiation translation steps (miRNAs). General translation factors can regulate the expression of specific mRNAs. An illustrative example is the stimulation of translation of the mRNA that encodes the GCN4 transcriptional activator by eIF2α phosphorylation.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2014
                13 January 2014
                13 January 2014
                : 42
                : 6
                : 3590-3606
                Affiliations
                1Department of Life Sciences, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Gyeongbuk 790-784, Republic of Korea, 2School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Gyeongbuk 790-784, Republic of Korea and 3Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, San 31 Hyoja-dong, Pohang, Gyeongbuk 790-784, Republic of Korea
                Author notes
                *To whom correspondence should be addressed. Tel: +82 54 279 2297; Fax: +82 54 279 2199; Email: ktk@ 123456postech.ac.kr
                Article
                gkt1379
                10.1093/nar/gkt1379
                3973335
                24423872
                4c05bfd0-1dcd-498a-ae61-2ef88ea8ca3e
                © The Author(s) 2014. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 26 June 2013
                : 12 December 2013
                : 16 December 2013
                Page count
                Pages: 17
                Categories
                Gene Regulation, Chromatin and Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article