39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Asymmetric Dimethylarginine, Endothelial Dysfunction and Renal Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          l-Arginine (Arg) is oxidized to l-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease

          Endothelium plays a crucial role in the maintenance of vascular tone and structure. Endothelial dysfunction is known to precede overt coronary artery disease. A number of cardiovascular risk factors, as well as metabolic diseases and systemic or local inflammation cause endothelial dysfunction. Nitric oxide (NO) is one of the major endothelium derived vaso-active substances whose role is of prime importance in maintaining endothelial homeostasis. Low levels of NO are associated with impaired endothelial function. Asymmetric dimethylarginine (ADMA), an analogue of L-arginine, is a naturally occurring product of metabolism found in human circulation. Elevated levels of ADMA inhibit NO synthesis and therefore impair endothelial function and thus promote atherosclerosis. ADMA levels are increased in people with hypercholesterolemia, atherosclerosis, hypertension, chronic heart failure, diabetes mellitus and chronic renal failure. A number of studies have reported ADMA as a novel risk marker of cardiovascular disease. Increased levels of ADMA have been shown to be the strongest risk predictor, beyond traditional risk factors, of cardiovascular events and all-cause and cardiovascular mortality in people with coronary artery disease. Interventions such as treatment with L-arginine have been shown to improve endothelium-mediated vasodilatation in people with high ADMA levels. However the clinical utility of modifying circulating ADMA levels remains uncertain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperglycemia and cardiovascular disease in type 2 diabetes.

            M. Laakso (1999)
            Cardiovascular disease (coronary heart disease, stroke, peripheral vascular disease) is the most important cause of mortality and morbidity among patients with type 2 diabetes. Conventional risk factors contribute similarly to macrovascular complications in patients with type 2 diabetes and nondiabetic subjects, and therefore, other explanations have been sought for enhanced atherothrombosis in type 2 diabetes. Among characteristics specific for type 2 diabetes, hyperglycemia has recently been a focus of keen research. A recent meta-analysis of 20 studies on nondiabetic subjects has demonstrated that in the nondiabetic range of glycemia (<6.1 mmol/l), increased glucose is already associated with an increased risk for cardiovascular disease. Similarly, 12 recent prospective studies have convincingly indicated that hyperglycemia contributes to cardiovascular complications in patients with type 2 diabetes. The recently published U.K. Prospective Diabetes Study has shown that intensive glucose control reduces effectively microvascular complications among patients with type 2 diabetes, but that its effect on the prevention of cardiovascular complications was limited. Given the fact that in the U.K. Prospective Diabetes Study, none of the treatment modalities was particularly effective in reducing glucose, this underestimates the true potential of the correction of hyperglycemia in the prevention of cardiovascular disease in type 2 diabetes. However, in addition to intensive therapy of hyperglycemia, other conventional risk factors should also be normalized to prevent cardiovascular disease in patients with type 2 diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine.

              Hyperhomocysteinemia is a putative risk factor for cardiovascular disease, which also impairs endothelium-dependent vasodilatation. A number of other risk factors for cardiovascular disease may exert their adverse vascular effects in part by elevating plasma levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase. Accordingly, we determined if homocysteine could increase ADMA levels. When endothelial or nonvascular cells were exposed to DL-homocysteine or to its precursor L-methionine, ADMA concentration in the cell culture medium increased in a dose- and time-dependent fashion. This effect was associated with the reduced activity of dimethylarginine dimethylaminohydrolase (DDAH), the enzyme that degrades ADMA. Furthermore, homocysteine-induced accumulation of ADMA was associated with reduced nitric oxide synthesis by endothelial cells and segments of pig aorta. The antioxidant pyrrollidine dithiocarbamate preserved DDAH activity and reduced ADMA accumulation. Moreover, homocysteine dose-dependently reduced the activity of recombinant human DDAH in a cell free system, an effect that was due to a direct interaction between homocysteine and DDAH. Homocysteine post-translationally inhibits DDAH enzyme activity, causing ADMA to accumulate and inhibit nitric oxide synthesis. This may explain the known effect of homocysteine to impair endothelium-mediated nitric oxide-dependent vasodilatation.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                2012
                10 September 2012
                : 13
                : 9
                : 11288-11311
                Affiliations
                Division of Metabolism, Cruces University Hospital, Barakaldo, Basque Country 48903, Spain; E-Mail: fernando.andradelodeiro@ 123456osakidetza.net
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: luisjose.aldamiz-echevarazuara@ 123456osakidetza.net ; Tel./Fax: +34-94-600-6327.
                Article
                ijms-13-11288
                10.3390/ijms130911288
                3472745
                23109853
                4c091ede-47d3-4ce4-b010-5e41586b9653
                © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 02 August 2012
                : 28 August 2012
                : 03 September 2012
                Categories
                Review

                Molecular biology
                renal failure,oxidative stress,kidney,dimethylarginine dimethylaminohydrolase (ddah),asymmetric dimethylarginine (adma),nitric oxide,endothelial dysfunction,arginine (arg),methylarginines,children

                Comments

                Comment on this article