Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

No adjustments are needed for multiple comparisons.

Epidemiology (Cambridge, Mass.)

Bias (Epidemiology), Probability, Multivariate Analysis, Humans, Data Interpretation, Statistical

Read this article at

ScienceOpenPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Adjustments for making multiple comparisons in large bodies of data are recommended to avoid rejecting the null hypothesis too readily. Unfortunately, reducing the type I error for null associations increases the type II error for those associations that are not null. The theoretical basis for advocating a routine adjustment for multiple comparisons is the "universal null hypothesis" that "chance" serves as the first-order explanation for observed phenomena. This hypothesis undermines the basic premises of empirical research, which holds that nature follows regular laws that may be studied through observations. A policy of not making adjustments for multiple comparisons is preferable because it will lead to fewer errors of interpretation when the data under evaluation are not random numbers but actual observations on nature. Furthermore, scientists should not be so reluctant to explore leads that may turn out to be wrong that they penalize themselves by missing possibly important findings.

      Related collections

      Author and article information

      Journal
      2081237

      Comments

      Comment on this article