+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      C-Reactive Protein: An In-Depth Look into Structure, Function, and Regulation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Cardiovascular disease is the leading cause of morbidity and mortality in the adult population worldwide, with atherosclerosis being its key pathophysiologic component. Atherosclerosis possesses a fundamental chronic inflammatory aspect, and the involvement of numerous inflammatory molecules has been studied in this scenario, particularly C-reactive protein (CRP). CRP is a plasma protein with strong phylogenetic conservation and high resistance to proteolysis, predominantly synthesized in the liver in response to proinflammatory cytokines, especially IL-6, IL-1 β, and TNF. CRP may intervene in atherosclerosis by directly activating the complement system and inducing apoptosis, vascular cell activation, monocyte recruitment, lipid accumulation, and thrombosis, among other actions. Moreover, CRP can dissociate in peripheral tissue—including atheromatous plaques—from its native pentameric form into a monomeric form, which may also be synthesized de novo in extrahepatic sites. Each form exhibits distinct affinities for ligands and receptors, and exerts different effects in the progression of atherosclerosis. In view of epidemiologic evidence associating high CRP levels with cardiovascular risk—reflecting the biologic impact it bears on atherosclerosis—measurement of serum levels of high-sensitivity CRP has been proposed as a tool for assessment of cardiovascular risk.

          Related collections

          Most cited references 100

          • Record: found
          • Abstract: found
          • Article: not found

          Fcgamma receptors: old friends and new family members.

          Although cellular receptors for immunoglobulins were first identified nearly 40 years ago, their central role in the immune response was discovered only in the last decade. They are key players in both the afferent and efferent phase of an immune response, setting thresholds for B cell activation, regulating the maturation of dendritic cells, and coupling the exquisite specificity of the antibody response to innate effector pathways, such as phagocytosis, antibody-dependent cellular cytotoxicity, and the recruitment and activation of inflammatory cells. Moreover, because of their general presence as receptor pairs consisting of activating and inhibitory molecules on the same cell, they have become a paradigm for studying the balance of positive and negative signals that ultimately determine the outcome of an immune response. This review will summarize recent results in Fc-receptor biology with an emphasis on data obtained in in vivo model systems.
            • Record: found
            • Abstract: found
            • Article: not found

            Adipose tissue-derived factors: impact on health and disease.

            The endocrine functions of the adipose organ are widely studied at this stage. The adipose organ, and in particular adipocytes, communicate with almost all other organs. Although some adipose tissue pads assume the functions as distinct "miniorgans," adipocytes can also be present in smaller numbers interspersed with other cell types. Although fat pads have the potential to have a significant systemic impact, adipocytes may also affect neighboring tissues through paracrine interactions. These local or systemic effects are mediated through lipid and protein factors. The protein factors are commonly referred to as adipokines. Their expression and posttranslational modifications can undergo dramatic changes under different metabolic conditions. Due to the fact that none of the mutations that affect adipose tissue trigger embryonic lethality, the study of adipose tissue physiology lends itself to genetic analysis in mice. In fact, life in the complete absence of adipose tissue is possible in a laboratory setting, making even the most extreme adipose tissue phenotypes genetically amenable to be analyzed by disruption of specific genes or overexpression of others. Here, we briefly discuss some basic aspects of adipocyte physiology and the systemic impact of adipocyte-derived factors on energy homeostasis.
              • Record: found
              • Abstract: found
              • Article: not found

              C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: Phosphorylcholine of oxidized phospholipids.

              C-reactive protein (CRP) is an acute-phase protein that binds specifically to phosphorylcholine (PC) as a component of microbial capsular polysaccharide and participates in the innate immune response against microorganisms. CRP elevation also is a major risk factor for cardiovascular disease. We previously demonstrated that EO6, an antioxidized LDL autoantibody, was a T15 clono-specific anti-PC antibody and specifically binds to PC on oxidized phosphatidylcholine (PtC) but not on native PtC. Similarly, EO6 binds apoptotic cells but not viable cells. In addition, such oxidized phospholipids are recognized by macrophage scavenger receptors, implying that these innate immune responses participate in the clearance because of their proinflammatory properties. We now report that CRP binds to oxidized LDL (OxLDL) and oxidized PtC (OxPtC), but does not bind to native, nonoxidized LDL nor to nonoxidized PtC, and its binding is mediated through the recognition of a PC moiety. Reciprocally, CRP binds to PC, which can be competed for by OxLDL and OxPtC but not by native LDL, nonoxidized PtC, or by oxidized phospholipids without the PC headgroup. CRP also binds to apoptotic cells, and this binding is competed for by OxLDL, OxPtC, and PC. These data suggest that CRP binds OxLDL and apoptotic cells by recognition of a PC moiety that becomes accessible as a result of oxidation of PtC molecule. We propose that, analogous to EO6 and scavenger receptors, CRP is a part of the innate immune response to oxidized PC-bearing phospholipids within OxLDL and on the plasma membranes of apoptotic cells.

                Author and article information

                Int Sch Res Notices
                Int Sch Res Notices
                International Scholarly Research Notices
                Hindawi Publishing Corporation
                15 December 2014
                : 2014
                1Endocrine and Metabolic Diseases Research Center, School of Medicine, Zulia University, 20th Avenue, Maracaibo 4004, Venezuela
                2Institute of Clinical Immunology, University of Los Andes, Mérida 5101, Mérida, Venezuela
                Author notes
                *Valmore Bermúdez: valmore@

                Academic Editor: Jose Antonio F. Ramires

                Copyright © 2014 Juan Salazar et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Review Article


                Comment on this article