15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Future Options of Molecular-Targeted Therapy in Small Cell Lung Cancer

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is the leading cause of cancer-related deaths worldwide. With a focus on histology, there are two major subtypes: Non-small cell lung cancer (NSCLC) (the more frequent subtype), and small cell lung cancer (SCLC) (the more aggressive one). Even though SCLC, in general, is a chemosensitive malignancy, relapses following induction therapy are frequent. The standard of care treatment of SCLC consists of platinum-based chemotherapy in combination with etoposide that is subsequently enhanced by PD-L1-inhibiting atezolizumab in the extensive-stage disease, as the addition of immune-checkpoint inhibition yielded improved overall survival. Although there are promising molecular pathways with potential therapeutic impacts, targeted therapies are still not an integral part of routine treatment. Against this background, we evaluated current literature for potential new molecular candidates such as surface markers (e.g., DLL3, TROP-2 or CD56), apoptotic factors (e.g., BCL-2, BET), genetic alterations (e.g., CREBBP, NOTCH or PTEN) or vascular markers (e.g., VEGF, FGFR1 or CD13). Apart from these factors, the application of so-called ‘poly-(ADP)-ribose polymerases’ (PARP) inhibitors can influence tumor repair mechanisms and thus offer new perspectives for future treatment. Another promising therapeutic concept is the inhibition of ‘enhancer of zeste homolog 2’ (EZH2) in the loss of function of tumor suppressors or amplification of (proto-) oncogenes. Considering the poor prognosis of SCLC patients, new molecular pathways require further investigation to augment our therapeutic armamentarium in the future.

          Related collections

          Most cited references168

          • Record: found
          • Abstract: found
          • Article: not found

          Cell death: critical control points.

          Programmed cell death is a distinct genetic and biochemical pathway essential to metazoans. An intact death pathway is required for successful embryonic development and the maintenance of normal tissue homeostasis. Apoptosis has proven to be tightly interwoven with other essential cell pathways. The identification of critical control points in the cell death pathway has yielded fundamental insights for basic biology, as well as provided rational targets for new therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil.

            Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor, improves survival when combined with carboplatin/paclitaxel for advanced nonsquamous non-small-cell lung cancer (NSCLC). This randomized phase III trial investigated the efficacy and safety of cisplatin/gemcitabine (CG) plus bevacizumab in this setting. Patients were randomly assigned to receive cisplatin 80 mg/m2 and gemcitabine 1,250 mg/m(2) for up to six cycles plus low-dose bevacizumab (7.5 mg/kg), high-dose bevacizumab (15 mg/kg), or placebo every 3 weeks until disease progression. The trial was not powered to compare the two doses directly. The primary end point was amended from overall survival (OS) to progression-free survival (PFS). Between February 2005 and August 2006, 1,043 patients were randomly assigned (placebo, n = 347; low dose, n = 345; high dose, n = 351). PFS was significantly prolonged; the hazard ratios for PFS were 0.75 (median PFS, 6.7 v 6.1 months for placebo; P = .003) in the low-dose group and 0.82 (median PFS, 6.5 v 6.1 months for placebo; P = .03) in the high-dose group compared with placebo. Objective response rates were 20.1%, 34.1%, and 30.4% for placebo, low-dose bevacizumab, and high-dose bevacizumab plus CG, respectively. Duration of follow-up was not sufficient for OS analysis. Incidence of grade 3 or greater adverse events was similar across arms. Grade > or = 3 pulmonary hemorrhage rates were < or = 1.5% for all arms despite 9% of patients receiving therapeutic anticoagulation. Combining bevacizumab (7.5 or 15 mg/kg) with CG significantly improved PFS and objective response rate. Bevacizumab plus platinum-based chemotherapy offers clinical benefit for bevacizumab-eligible patients with advanced NSCLC.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              BCL-2 family members and the mitochondria in apoptosis

                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                17 May 2019
                May 2019
                : 11
                : 5
                : 690
                Affiliations
                Department of Medicine A, Hematology, Oncology and Pulmonary Medicine, University Hospital Muenster, 48149 Muenster, Germany; georg.evers@ 123456ukmuenster.de (G.E.); andrea.kerkhoff@ 123456ukmuenster.de (A.K.), mohrmic@ 123456ukmuenster.de (M.M.); christoph.schliemann@ 123456ukmuenster.de (C.S.); berdel@ 123456uni-muenster.de (W.E.B.)
                Author notes
                [* ]Correspondence: arikbernard.schulze@ 123456ukmuenster.de (A.B.S.); larshenning.schmidt@ 123456ukmuenster.de (L.H.S.); Tel.: +49-251-83-44827 (L.H.S.)
                Author information
                https://orcid.org/0000-0002-1644-3573
                Article
                cancers-11-00690
                10.3390/cancers11050690
                6562929
                31108964
                4c2214bb-8bff-4404-ad7a-68699217c05a
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 March 2019
                : 14 May 2019
                Categories
                Review

                sclc,anti-angiogenesis,apoptosis,epigenetics,targeted therapy

                Comments

                Comment on this article