11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RhoA/Rho-kinase triggers epithelial-mesenchymal transition in mesothelial cells and contributes to the pathogenesis of dialysis-related peritoneal fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peritoneal fibrosis (PF) with associated peritoneal dysfunction is almost invariably observed in long-term peritoneal dialysis (PD) patients. Advanced glycation end products (AGEs) are pro-oxidant compounds produced in excess during the metabolism of glucose and are present in high levels in standard PD solutions. The GTPase RhoA has been implicated in PF, but its specific role remains poorly understood. Here, we studied the effects of RhoA/Rho-kinase signaling in AGEs-induced epithelial-mesenchymal transition (EMT) in human peritoneal mesothelial cells (HPMCs), and evaluated morphological and molecular changes in a rat model of PD-related PF. Activation of RhoA/Rho-kinase and activating protein-1 (AP-1) was assessed in HPMCs using pull-down and electrophoretic mobility shift assays, respectively, while expression of transforming growth factor-β, fibronectin, α-smooth muscle actin, vimentin, N-cadherin, and E-cadherin expression was assessed using immunohistochemistry and western blot. AGEs exposure activated Rho/Rho-kinase in HPMCs and upregulated EMT-related genes via AP-1. These changes were prevented by the Rho-kinase inhibitors fasudil and Y-27632, and by the AP-1 inhibitor curcumin. Importantly, fasudil normalized histopathological and molecular alterations and preserved peritoneal function in rats. These data support the therapeutic potential of Rho-kinase inhibitors in PD-related PF.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Transforming growth factor beta in tissue fibrosis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells.

            During continuous ambulatory peritoneal dialysis, the peritoneum is exposed to bioincompatible dialysis fluids that cause denudation of mesothelial cells and, ultimately, tissue fibrosis and failure of ultrafiltration. However, the mechanism of this process has yet to be elucidated. Mesothelial cells isolated from effluents in dialysis fluid from patients undergoing continuous ambulatory peritoneal dialysis were phenotypically characterized by flow cytometry, confocal immunofluorescence, Western blotting, and reverse-transcriptase polymerase chain reaction. These cells were compared with mesothelial cells from omentum and treated with various stimuli in vitro to mimic the transdifferentiation observed during continuous ambulatory peritoneal dialysis. Results were confirmed in vivo by immunohistochemical analysis performed on peritoneal-biopsy specimens. Soon after dialysis is initiated, peritoneal mesothelial cells undergo a transition from an epithelial phenotype to a mesenchymal phenotype with a progressive loss of epithelial morphology and a decrease in the expression of cytokeratins and E-cadherin through an induction of the transcriptional repressor snail. Mesothelial cells also acquire a migratory phenotype with the up-regulation of expression of alpha2 integrin. In vitro analyses point to wound repair and profibrotic and inflammatory cytokines as factors that initiate mesothelial transdifferentiation. Immunohistochemical studies of peritoneal-biopsy specimens from patients undergoing continuous ambulatory peritoneal dialysis demonstrate the expression of the mesothelial markers intercellular adhesion molecule 1 and cytokeratins in fibroblast-like cells entrapped in the stroma, suggesting that these cells stemmed from local conversion of mesothelial cells. Our results suggest that mesothelial cells have an active role in the structural and functional alteration of the peritoneum during peritoneal dialysis. The findings suggest potential targets for the design of new dialysis solutions and markers for the monitoring of patients. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Morphologic changes in the peritoneal membrane of patients with renal disease.

              This study examined the morphologic features of the parietal peritoneal membranes of 130 patients undergoing peritoneal dialysis (PD) and compared them with the features of the peritoneal membranes of normal individuals, uremic predialysis patients, and patients undergoing hemodialysis. The median thickness of the submesothelial compact collagenous zone was 50 microm for normal subjects, 140 microm for uremic patients, 150 microm for patients undergoing hemodialysis, and 270 microm for patients undergoing PD (P 97 mo, 700 microm (n = 19)]. Vascular changes included progressive subendothelial hyalinization, with luminal narrowing or obliteration. These changes were absent in samples from normal subjects but were present in 28% of samples from uremic patients and 56% of biopsies from patients undergoing PD. In the PD group, the prevalence of vasculopathy increased significantly with therapy duration (P = 0.0001). The density of blood vessels per unit length of peritoneum was significantly higher for patients with membrane failure and was correlated with the degree of fibrosis (P = 0.01). For the first time, a comprehensive cross-sectional analysis of the morphologic changes in the peritoneal membranes of patients undergoing PD is provided. The infrequency of fibrosis in the absence of vasculopathy suggests that vasculopathy may predispose patients to the development of fibrosis. This study provides a sufficiently large cohort of samples to allow structure-function relationships to be established, as well as providing a repository of tissue for further studies.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                6 March 2018
                12 January 2018
                : 9
                : 18
                : 14397-14412
                Affiliations
                1 Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
                2 Department of Biostatistics, School of Public Health, Shandong University, Jinan, China
                3 Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
                Author notes
                Correspondence to: Xiang Liu, liuxyugz@ 123456163.com
                Article
                24208
                10.18632/oncotarget.24208
                5865678
                4c23e761-91a8-47c0-8b3e-3c4f4b40bcc7
                Copyright: © 2018 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 April 2017
                : 5 December 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                peritoneal dialysis,peritoneal fibrosis,emt,rhoa/rho-kinase,ages
                Oncology & Radiotherapy
                peritoneal dialysis, peritoneal fibrosis, emt, rhoa/rho-kinase, ages

                Comments

                Comment on this article