19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Future sea-level rise from Greenland’s main outlet glaciers in a warming climate

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge to the ocean. The latter is controlled by the acceleration of ice flow and subsequent thinning of fast-flowing marine-terminating outlet glaciers. Quantifying the future dynamic contribution of such glaciers to sea-level rise (SLR) remains a major challenge because outlet glacier dynamics are poorly understood. Here we present a glacier flow model that includes a fully dynamic treatment of marine termini. We use this model to simulate behaviour of four major marine-terminating outlet glaciers, which collectively drain about 22 per cent of the Greenland Ice Sheet. Using atmospheric and oceanic forcing from a mid-range future warming scenario that predicts warming by 2.8 degrees Celsius by 2100, we project a contribution of 19 to 30 millimetres to SLR from these glaciers by 2200. This contribution is largely (80 per cent) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. After initial increases, however, dynamic losses from these four outlets remain relatively constant and contribute to SLR individually at rates of about 0.01 to 0.06 millimetres per year. These rates correspond to ice fluxes that are less than twice those of the late 1990s, well below previous upper bounds. For a more extreme future warming scenario (warming by 4.5 degrees Celsius by 2100), the projected losses increase by more than 50 per cent, producing a cumulative SLR of 29 to 49 millimetres by 2200.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: not found
          • Article: not found

          Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Partitioning recent Greenland mass loss.

            Mass budget calculations, validated with satellite gravity observations [from the Gravity Recovery and Climate Experiment (GRACE) satellites], enable us to quantify the individual components of recent Greenland mass loss. The total 2000-2008 mass loss of approximately 1500 gigatons, equivalent to 0.46 millimeters per year of global sea level rise, is equally split between surface processes (runoff and precipitation) and ice dynamics. Without the moderating effects of increased snowfall and refreezing, post-1996 Greenland ice sheet mass losses would have been 100% higher. Since 2006, high summer melt rates have increased Greenland ice sheet mass loss to 273 gigatons per year (0.75 millimeters per year of equivalent sea level rise). The seasonal cycle in surface mass balance fully accounts for detrended GRACE mass variations, confirming insignificant subannual variation in ice sheet discharge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface melt-induced acceleration of Greenland ice-sheet flow.

              Ice flow at a location in the equilibrium zone of the west-central Greenland Ice Sheet accelerates above the midwinter average rate during periods of summer melting. The near coincidence of the ice acceleration with the duration of surface melting, followed by deceleration after the melting ceases, indicates that glacial sliding is enhanced by rapid migration of surface meltwater to the ice-bedrock interface. Interannual variations in the ice acceleration are correlated with variations in the intensity of the surface melting, with larger increases accompanying higher amounts of summer melting. The indicated coupling between surface melting and ice-sheet flow provides a mechanism for rapid, large-scale, dynamic responses of ice sheets to climate warming.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                May 2013
                May 8 2013
                May 2013
                : 497
                : 7448
                : 235-238
                Article
                10.1038/nature12068
                23657350
                4c30d289-70bf-4f0d-aafa-65daf43a56ab
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article