3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Abrogated Caveolin-1 expression via histone modification enzyme Setdb2 regulates brain edema in a mouse model of influenza-associated encephalopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza-associated encephalopathy (IAE) is a serious complication that can follow influenza virus infection. Once a cytokine storm is induced during influenza virus infection, tight junction protein disruption occurs, which consequently leads to blood-brain barrier (BBB) breakdown. However, the details of IAE pathogenesis are not well understood. Here, we established a murine IAE model by administration of lipopolysaccharide following influenza virus infection. Brains from IAE model mice had significantly higher expression of type I interferons and inflammatory cytokines. In addition, the expression of Caveolin -1, one of the key proteins that correlate with protection of the BBB, was significantly lower in brains from the IAE group compared with the control group. We also found that, among 84 different histone modification enzymes, only SET domain bifurcated 2 (Setdb2), one of the histone methyltransferases that methylates the lysine 9 of histone H3, showed significantly higher expression in the IAE group compared with the control group. Furthermore, chromatin immunoprecipitation revealed that methylation of histone H3 lysine 9 was correlated with repression of the Caveolin-1 promoter region. These studies identify Caveolin-1 as a key regulator of BBB permeability in IAE and reveal that it acts through histone modification induced by Setdb2.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          The dynamic blood-brain barrier.

          With the endothelium as its central unit, the blood-brain barrier (BBB) is a complex multicellular structure separating the central nervous system (CNS) from the systemic circulation. Disruption of the BBB has now been implicated in a multitude of acute and chronic CNS disorders indicating the potentially devastating effects of BBB breakdown on brain function. However, the healthy BBB is not an impermeable wall, but rather a communication 'centre', responding to and passing signals between the CNS and blood. New studies are identifying BBB-specific transport pathways that tightly regulate the entry and exit of molecules to and from the brain. They are revealing a highly plastic barrier in which dynamic changes in BBB components like paracellular tight junction complexes can contribute to BBB maintenance. Here, we provide a succinct overview of the current state-of-play in BBB research and summarize novel findings into BBB regulation in homeostatic regulation of the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone modifications for human epigenome analysis.

            Histones function both positively and negatively in the regulation of gene expression, mainly governed by post-translational modifications on specific amino acid residues. Although histone modifications are not necessarily prerequisite codes, they may still serve as good epigenetic indicators of chromatin state associated with gene activation or repression. In particular, six emerging classes of histone H3 modifications are subjected for epigenome profiling by the International Human Epigenome Consortium. In general, transcription start sites of actively transcribed genes are marked by trimethylated H3K4 (H3K4me3) and acetylated H3K27 (H3K27ac), and active enhancers can be identified by enrichments of both monomethylated H3K4 (H3K4me1) and H3K27ac. Gene bodies of actively transcribed genes are associated with trimethylated H3K36 (H3K36me3). Gene repression can be mediated through two distinct mechanisms involving trimethylated H3K9 (H3K9me3) and trimethylated H3K27 (H3K27me3). Enrichments of these histone modifications on specific loci, or in genome wide, in given cells can be analyzed by chromatin immunoprecipitation (ChIP)-based methods using an antibody directed against the site-specific modification. When performing ChIP experiments, one should be careful about the specificity of antibody, as this affects the data interpretation. If cell samples with preserved histone-DNA contacts are available, evaluation of histone modifications, in addition to DNA methylaion, at specific gene loci would be useful for deciphering the epigenome state for human genetics studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Jmjd3 contributes to the control of gene expression in LPS-activated macrophages

              Jmjd3, a JmjC family histone demethylase, is induced by the transcription factor NF-kB in response to microbial stimuli. Jmjd3 erases H3K27me3, a histone mark associated with transcriptional repression and involved in lineage determination. However, the specific contribution of Jmjd3 induction and H3K27me3 demethylation to inflammatory gene expression remains unknown. Using chromatin immunoprecipitation-sequencing we found that Jmjd3 is preferentially recruited to transcription start sites characterized by high levels of H3K4me3, a marker of gene activity, and RNA polymerase II (Pol_II). Moreover, 70% of lipopolysaccharide (LPS)-inducible genes were found to be Jmjd3 targets. Although most Jmjd3 target genes were unaffected by its deletion, a few hundred genes, including inducible inflammatory genes, showed moderately impaired Pol_II recruitment and transcription. Importantly, most Jmjd3 target genes were not associated with detectable levels of H3K27me3, and transcriptional effects of Jmjd3 absence in the window of time analysed were uncoupled from measurable effects on this histone mark. These data show that Jmjd3 fine-tunes the transcriptional output of LPS-activated macrophages in an H3K27 demethylation-independent manner.
                Bookmark

                Author and article information

                Contributors
                toshi-ito@naramed-u.ac.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                22 January 2019
                22 January 2019
                2019
                : 9
                : 284
                Affiliations
                [1 ]ISNI 0000 0004 0372 782X, GRID grid.410814.8, Department of Immunology, , Nara Medical University, ; Kashihara, Nara Japan
                [2 ]ISNI 0000 0004 0372 782X, GRID grid.410814.8, Center for Infectious Diseases, , Nara Medical University, ; Kashihara, Nara Japan
                [3 ]ISNI 0000 0004 0372 782X, GRID grid.410814.8, Department of Anatomy & Neuroscience, , Nara Medical University, ; Kashihara, Nara Japan
                [4 ]ISNI 0000 0001 1302 4472, GRID grid.261356.5, Department of Pathology and Experimental Medicine, , Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, ; Okayama, Japan
                Article
                36489
                10.1038/s41598-018-36489-8
                6342998
                30670717
                4c3614e8-c349-476b-bc72-833509f9e597
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 31 May 2018
                : 19 November 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article