14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomal miRNAs species in the blood of small cell and non-small cell lung cancer patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung cancer is a devastating disease with overall bleak prognosis. Current methods to diagnose lung cancer are rather invasive and are inadequate to detect the disease at an early stage when treatment is likely to be most effective. In this study, a shotgun sequencing approach was used to study the microRNA (miRNA) cargo of serum-derived exosomes of small cell lung cancer (SCLC) (n=9) and non-small cell lung cancer (NSCLC) (n=11) patients, and healthy controls (n=10). The study has identified 17 miRNA species that are differentially expressed in cancer patients and control subjects. Furthermore, within the patient groups, a set of miRNAs were differentially expressed in exosomal samples obtained before and after chemotherapy treatment. This manuscript demonstrates the potential of exosomal miRNAs for developing noninvasive tests for disease differentiation and treatment monitoring in lung cancer patients.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomal microRNA: a diagnostic marker for lung cancer.

          To date, there is no screening test for lung cancer shown to affect overall mortality. MicroRNAs (miRNAs) are a class of small noncoding RNA genes found to be abnormally expressed in several types of cancer, suggesting a role in the pathogenesis of human cancer. We evaluated the circulating levels of tumor exosomes, exosomal small RNA, and specific exosomal miRNAs in patients with and without lung adenocarcinoma, correlating the levels with the American Joint Committee on Cancer (AJCC) disease stage to validate it as an acceptable marker for diagnosis and prognosis in patients with adenocarcinoma of the lung. To date, 27 patients with lung adenocarcinoma AJCC stages I-IV and 9 controls, all aged 21-80 years, were enrolled in the study. Small RNA was detected in the circulating exosomes. The mean exosome concentration was 2.85 mg/mL (95% CI, 1.94-3.76) for the lung adenocarcinoma group versus 0.77 mg/mL (95% CI, 0.68-0.86) for the control group (P < .001). The mean miRNA concentration was 158.6 ng/mL (95% CI, 145.7-171.5) for the lung adenocarcinoma group versus 68.1 ng/mL (95% CI, 57.2-78.9) for the control group (P < .001). Comparisons between peripheral circulation miRNA-derived exosomes and miRNA-derived tumors indicated that the miRNA signatures were not significantly different. The significant difference in total exosome and miRNA levels between lung cancer patients and controls, and the similarity between the circulating exosomal miRNA and the tumor-derived miRNA patterns, suggest that circulating exosomal miRNA might be useful as a screening test for lung adenocarcinoma. No correlation between the exosomal miRNA levels and the stage of disease can be made at this point.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MicroRNAs in cancer: small molecules with a huge impact.

            Every cellular process is likely to be regulated by microRNAs, and an aberrant microRNA expression signature is a hallmark of several diseases, including cancer. MicroRNA expression profiling has indeed provided evidence of the association of these tiny molecules with tumor development and progression. An increasing number of studies have then demonstrated that microRNAs can function as potential oncogenes or oncosuppressor genes, depending on the cellular context and on the target genes they regulate. Here we review our current knowledge about the involvement of microRNAs in cancer and their potential as diagnostic, prognostic, and therapeutic tools.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer.

              Recent findings that human serum contains stably expressed microRNA (miRNA) have revealed a great potential of serum miRNA signature as disease fingerprints to predict survival. We used genome-wide serum miRNA expression analysis to investigate the role of serum miRNA in predicting prognosis of non-small-cell lung cancer (NSCLC). To control disease heterogeneity, we used patients with stages I to IIIa lung adenocarcinoma and squamous cell carcinoma, who were treated with both operation and adjuvant chemotherapies. In the discovery stage, Solexa sequencing followed by individual quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assays was used to test the difference in levels of serum miRNAs between 30 patients with longer survival (alive and mean survival time, 49.54 months) and 30 patients with shorter survival matched by age, sex, and stage (dead and mean survival time, 9.54 months). The detected serum miRNAs then were validated in 243 patients (randomly classified into two subgroups: n = 120 for the training set, and n = 123 for the testing set). Eleven serum miRNAs were found to be altered more than five-fold by Solexa sequencing between longer-survival and shorter-survival groups, and levels of four miRNAs (ie, miR-486, miR-30d, miR-1 and miR-499) were significantly associated with overall survival. The four-miRNA signature also was consistently an independent predictor of overall survival for both training and testing samples. The four-miRNA signature from the serum may serve as a noninvasive predictor for the overall survival of NSCLC.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                13 April 2018
                13 April 2018
                : 9
                : 28
                : 19793-19806
                Affiliations
                1 Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
                2 Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, USA
                3 Department of Medicine, University of Chicago, Chicago, IL, USA
                4 Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
                Author notes
                Correspondence to: Ravi Salgia, rsalgia@ 123456coh.org
                Article
                24857
                10.18632/oncotarget.24857
                5929426
                29731983
                4c363b3c-c5d7-49aa-8c27-b50f1fcee85d
                Copyright: © 2018 Poroyko et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 12 January 2018
                : 2 March 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                exosome,mirna,nsclc,sclc,liquid biopsy
                Oncology & Radiotherapy
                exosome, mirna, nsclc, sclc, liquid biopsy

                Comments

                Comment on this article