102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Study and use of the probiotic Lactobacillus reuteri in pigs: a review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Probiotics are living microorganisms that provide a wide variety of health benefits to the host when ingested in adequate amounts. The bacterial strains most frequently used as probiotic agents are lactic acid bacteria, such as Lactobacillus reuteri, which is one of the few endogenous Lactobacillus species found in the gastrointestinal tract of vertebrates, including humans, rats, pigs and chickens. L. reuteri is one of the most well documented probiotic species and has been widely utilized as a probiotic in humans and animals for many years. Initially, L. reuteri was used in humans to reduce the incidence and the severity of diarrhea, prevent colic and necrotic enterocolitis, and maintain a functional mucosal barrier. As interest in alternatives to in-feed antibiotics has grown in recent years, some evidence has emerged that probiotics may promote growth, improve the efficiency of feed utilization, prevent diarrhea, and regulate the immune system in pigs. In this review, the characteristics of L. reuteri are described, in order to update the evidence on the efficacy of using L. reuteri in pigs.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Genes and molecules of lactobacilli supporting probiotic action.

          Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Probiotics and prebiotics in animal feeding for safe food production.

            Recent outbreaks of food-borne diseases highlight the need for reducing bacterial pathogens in foods of animal origin. Animal enteric pathogens are a direct source for food contamination. The ban of antibiotics as growth promoters (AGPs) has been a challenge for animal nutrition increasing the need to find alternative methods to control and prevent pathogenic bacterial colonization. The modulation of the gut microbiota with new feed additives, such as probiotics and prebiotics, towards host-protecting functions to support animal health, is a topical issue in animal breeding and creates fascinating possibilities. Although the knowledge on the effects of such feed additives has increased, essential information concerning their impact on the host are, to date, incomplete. For the future, the most important target, within probiotic and prebiotic research, is a demonstrated health-promoting benefit supported by knowledge on the mechanistic actions. Genomic-based knowledge on the composition and functions of the gut microbiota, as well as its deviations, will advance the selection of new and specific probiotics. Potential combinations of suitable probiotics and prebiotics may prove to be the next step to reduce the risk of intestinal diseases and remove specific microbial disorders. In this review we discuss the current knowledge on the contribution of the gut microbiota to host well-being. Moreover, we review available information on probiotics and prebiotics and their application in animal feeding. Copyright 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp.

              The present paper provides an overview on the use of probiotic organisms as live supplements, with particular emphasis on Lactobacillus acidophilus and Bifidobacterium spp. The therapeutic potential of these bacteria in fermented dairy products is dependent on their survival during manufacture and storage. Probiotic bacteria are increasingly used in food and pharmaceutical applications to balance disturbed intestinal microflora and related dysfunction of the human gastrointestinal tract. Lactobacillus acidophilus and Bifidobacterium spp. have been reported to be beneficial probiotic organisms that provide excellent therapeutic benefits. The biological activity of probiotic bacteria is due in part to their ability to attach to enterocytes. This inhibits the binding of enteric pathogens by a process of competitive exclusion. Attachment of probiotic bacteria to cell surface receptors of enterocytes also initiates signalling events that result in the synthesis of cytokines. Probiotic bacteria also exert an influence on commensal micro-organisms by the production of lactic acid and bacteriocins. These substances inhibit growth of pathogens and also alter the ecological balance of enteric commensals. Production of butyric acid by some probiotic bacteria affects the turnover of enterocytes and neutralizes the activity of dietary carcinogens, such as nitrosamines, that are generated by the metabolic activity of commensal bacteria in subjects consuming a high-protein diet. Therefore, inclusion of probiotic bacteria in fermented dairy products enhances their value as better therapeutic functional foods. However, insufficient viability and survival of these bacteria remain a problem in commercial food products. By selecting better functional probiotic strains and adopting improved methods to enhance survival, including the use of appropriate prebiotics and the optimal combination of probiotics and prebiotics (synbiotics), an increased delivery of viable bacteria in fermented products to the consumers can be achieved.
                Bookmark

                Author and article information

                Contributors
                houchengli@163.com
                ziyangzxf@163.com
                yangfj0115@gmail.com
                liuhongever@sina.com
                qiaoshy@mafic.ac.cn
                Journal
                J Anim Sci Biotechnol
                J Anim Sci Biotechnol
                Journal of Animal Science and Biotechnology
                BioMed Central (London )
                1674-9782
                2049-1891
                9 April 2015
                9 April 2015
                2015
                : 6
                : 1
                : 14
                Affiliations
                State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
                Article
                14
                10.1186/s40104-015-0014-3
                4423586
                25954504
                4c3b77ba-faa6-40dd-9a78-90c12607262b
                © Hou et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 26 October 2014
                : 26 March 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Animal science & Zoology
                antibiotics,application,lactobacillus reuteri,pigs,probiotics
                Animal science & Zoology
                antibiotics, application, lactobacillus reuteri, pigs, probiotics

                Comments

                Comment on this article