36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Roles of Serotonergic and Adrenergic Receptors in the Antinociception of Selective Cyclooxygenase-2 Inhibitor in the Rat Spinal Cord

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The analgesic mechanisms of cyclooxygenase (COX)-2 inhibitors have been explained mainly on the basis of the inhibition of prostaglandin biosynthesis. However, several lines of evidence suggest that their analgesic effects are mediated through serotonergic or adrenergic transmissions. We investigated the roles of these neurotransmitters in the antinociception of a selective COX-2 inhibitor at the spinal level.

          Methods

          DUP-697, a selective COX-2 inhibitor, was delivered through an intrathecal catheter to male Sprague-Dawley rats to examine its effect on the flinching responses evoked by formalin injection into the hindpaw. Subsequently, the effects of intrathecal pretreatment with dihydroergocristine, prazosin, and yohimbine, which are serotonergic, α1 adrenergic and α2 adrenergic receptor antagonists, respectively, on the analgesia induced by DUP-697 were assessed.

          Results

          Intrathecal DUP-697 reduced the flinching response evoked by formalin injection during phase 1 and 2. But, intrathecal dihydroergocristine, prazosin, and yohimbine had little effect on the antinociception of intrathecal DUP-697 during both phases of the formalin test.

          Conclusions

          Intrathecal DUP-697, a selective COX-2 inhibitor, effectively relieved inflammatory pain in rats. Either the serotonergic or adrenergic transmissions might not be involved in the analgesic activity of COX-2 inhibitors at the spinal level.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic catheterization of the spinal subarachnoid space.

          To administer drugs into the spinal subarachnoid space of unanesthetized and intact rats and rabbits, a procedure is described whereby a polyethylene catheter (PE-10) may be inserted through a puncture of the atlanto-occipital membrane and secured to the skull. Calibration experiments carried out with bromophenol blue dye, 3H-naloxone and 14C-urea revealed first, that there was little rostro-caudal diffusion of the injectate along the spinal axis and secondly, that even for compounds such as naloxone which can rapidly permeate neural tissues, the levels which do appear in the brain are small following the spinal subarachnoid administration of the drug. Control injections, administered either acutely or repeatedly over a prolonged period of time, had no detectable effect on the animal's behavior. These observations, as well as the lack of pathology in the spinal cords of rats having such catheters for periods of up to 4 months suggests that the implant is well tolerated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spinal delivery of analgesics in experimental models of pain and analgesia.

            Systemic administration of analgesics can lead to serious adverse side effects compromising therapeutic benefit in some patients. Information coding pain transmits along an afferent neuronal network, the first synapses of which reside principally in the spinal cord. Delivery of compounds to spinal cord, the intended site of action for some analgesics, is potentially a more efficient and precise method for inhibiting the pain signal. Activation of specific proteins that reside in spinal neuronal membranes can result in hyperpolarization of secondary neurons, which can prevent transmission of the pain signal. This is one of the mechanisms by which opioids induce analgesia. The spinal cord is enriched in such molecular targets, the activation of which inhibit the transmission of the pain signal early in the afferent neuronal network. This review describes the pre-clinical models that enable new target discovery and development of novel analgesics for site-directed pain management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity.

              Formalin injected subcutaneously into the paw is a frequently used pain assay; it evokes an initial period of licking and flinching followed by a period of quiescence and last by a second period of intense and protracted licking and flinching. The prominent second phase is believed to reflect the development of a central (spinal cord) facilitation. This conclusion is based on the assumption that formalin evokes an initial burst of activity in fine afferent fibers, followed by prolonged low levels of activity in C fibers. Detailed reports substantiating this essential assumption have not been published. Thus, we recorded in situ from single sural nerve fibers, identified by their conduction velocity and modality, in the barbiturate anesthetized rat. Following formalin (2.5%, 50 microliters) injection into their receptive fields, phase-1 activity was prominent in A beta and A delta fibers as well as in high-threshold C nociceptive afferent fibers. Phase-2 activity was observed in A delta fibers with receptive fields in hairy skin and in all mechanically sensitive C fibers. Mean phase-2 activity in these fibers was 1/2-2/3 of the magnitude achieved in phase 1. Mechanically insensitive fibers and A delta and C fibers with receptive field centers outside of the injection zone began firing 15 min or more post-injection and would contribute to phase-2, but not phase-1, behavioral activity. Intravenous infusion of low doses of lidocaine yielding plasma levels of 3.6-7.9 micrograms/ml administered during phase 2 blocked formalin-evoked activity in primary afferent fibers in a dose-related fashion without blocking either electrically or mechanically evoked activity. Effective plasma doses were comparable to those found to relieve neuropathic pain. These data indicate that phase 2 in the formalin test is more closely related to ongoing afferent input than had previously been thought.
                Bookmark

                Author and article information

                Journal
                Korean J Pain
                KJP
                The Korean Journal of Pain
                The Korean Pain Society
                2005-9159
                2093-0569
                December 2011
                30 November 2011
                : 24
                : 4
                : 179-184
                Affiliations
                Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, Gwangju, Korea.
                Author notes
                Correspondence to: Woong Mo Kim, MD. Department of Anesthesiology and Pain Medicine, Chonnam National University Hospital, 671, Jebong-no, Dong-gu, Gwangju 501-757, Korea. Tel: +82-62-220-6893, Fax: +82-62-232-6294, kimwm@ 123456chonnam.ac.kr
                Article
                10.3344/kjp.2011.24.4.179
                3248580
                22220238
                4c3f4df5-a528-4412-85e1-ca1cd0e038c2
                Copyright © The Korean Pain Society, 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 August 2011
                : 14 October 2011
                : 20 October 2011
                Categories
                Original Article

                Anesthesiology & Pain management
                spinal cord,analgesia,cox-2 inhibitor,inflammatory pain,mechanism
                Anesthesiology & Pain management
                spinal cord, analgesia, cox-2 inhibitor, inflammatory pain, mechanism

                Comments

                Comment on this article