25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low Serum Bicarbonate Predicts Residual Renal Function Loss in Peritoneal Dialysis Patients

      research-article
      , MD, PhD, , MD, PhD, , MD, , MD, , , MD, PhD, , MD, PhD, , MD, PhD, , MD, PhD, , MD, PhD, , MD, PhD, , MD, PhD
      Medicine
      Wolters Kluwer Health

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Low residual renal function (RRF) and serum bicarbonate are associated with adverse outcomes in peritoneal dialysis (PD) patients. However, a relationship between the 2 has not yet been determined in these patients. Therefore, this study aimed to investigate whether low serum bicarbonate has a deteriorating effect on RRF in PD patients.

          This prospective observational study included a total of 405 incident patients who started PD between January 2000 and December 2005. We determined risk factors for complete loss of RRF using competing risk methods and evaluated the effects of time-averaged serum bicarbonate (TA-Bic) on the decline of RRF over the first 3 years of dialysis treatment using generalized linear mixed models.

          During the first 3 years of dialysis, 95 (23.5%) patients became anuric. The mean time until patients became anuric was 20.8 ± 9.0 months. After adjusting for multiple potentially confounding covariates, an increase in TA-Bic level was associated with a significantly decreased risk of loss of RRF (hazard ratio per 1 mEq/L increase, 0.84; 0.75–0.93; P = 0.002), and in comparison to TA-Bic ≥ 24 mEq/L, TA-Bic < 24 mEq/L conferred a 2.62-fold higher risk of becoming anuric. Furthermore, the rate of RRF decline estimated by generalized linear mixed models was significantly greater in patients with TA-Bic < 24 mEq/L compared with those with TA-Bic ≥ 24 mEq/L (−0.16 vs −0.11 mL/min/mo/1.73 m 2, P < 0.001).

          In this study, a clear association was found between low serum bicarbonate and loss of RRF in PD patients. Nevertheless, whether correction of metabolic acidosis for this indication provides additional protection for preserving RRF in these patients is unknown. Future interventional studies should more appropriately address this question.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Bicarbonate supplementation slows progression of CKD and improves nutritional status.

          Bicarbonate supplementation preserves renal function in experimental chronic kidney disease (CKD), but whether the same benefit occurs in humans is unknown. Here, we randomly assigned 134 adult patients with CKD (creatinine clearance [CrCl] 15 to 30 ml/min per 1.73 m(2)) and serum bicarbonate 16 to 20 mmol/L to either supplementation with oral sodium bicarbonate or standard care for 2 yr. The primary end points were rate of CrCl decline, the proportion of patients with rapid decline of CrCl (>3 ml/min per 1.73 m(2)/yr), and ESRD (CrCl <10 ml/min). Secondary end points were dietary protein intake, normalized protein nitrogen appearance, serum albumin, and mid-arm muscle circumference. Compared with the control group, decline in CrCl was slower with bicarbonate supplementation (5.93 versus 1.88 ml/min 1.73 m(2); P < 0.0001). Patients supplemented with bicarbonate were significantly less likely to experience rapid progression (9 versus 45%; relative risk 0.15; 95% confidence interval 0.06 to 0.40; P < 0.0001). Similarly, fewer patients supplemented with bicarbonate developed ESRD (6.5 versus 33%; relative risk 0.13; 95% confidence interval 0.04 to 0.40; P < 0.001). Nutritional parameters improved significantly with bicarbonate supplementation, which was well tolerated. This study demonstrates that bicarbonate supplementation slows the rate of progression of renal failure to ESRD and improves nutritional status among patients with CKD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study.

            Studies of the adequacy of peritoneal dialysis and recommendations have assumed that renal and peritoneal clearances are comparable and therefore additive. The CANUSA data were reanalyzed in an effort to address this assumption. Among the 680 patients in the original CANUSA study, 601 had all of the variables of interest for this report. Adequacy of dialysis was estimated from GFR (mean of renal urea and creatinine clearance) and from peritoneal creatinine clearance. The Cox proportional-hazards model was used to evaluate the time-dependent association of these independent variables with patient survival. For each 5 L/wk per 1.73 m(2) increment in GFR, there was a 12% decrease in the relative risk (RR) of death (RR, 0.88; 95% confidence interval [CI], 0.83 to 0.94) but no association with peritoneal creatinine clearance (RR, 1.00; 95% CI, 0.90 to 1.10). Estimates of fluid removal (24-h urine volume, net peritoneal ultrafiltration, and total fluid removal) then were added to the Cox model. For a 250-ml increment in urine volume, there was a 36% decrease in the RR of death (RR, 0.64; 95% CI, 0.51 to 0.80). The association of patient survival with GFR disappeared (RR, 0.99; 95% CI, 0.94 to 1.04). However, neither net peritoneal ultrafiltration nor total fluid removal was associated with patient survival. Although these results may be explained partly, statistically, by less variability in peritoneal clearance than in GFR, the latter seems to be physiologically more important than the former. The assumption of equivalence of peritoneal and renal clearances is not supported by these data. Recommendations for adequate peritoneal dialysis need to be reevaluated in light of these observations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate.

              Current guidelines recommend Na(+)-based alkali for CKD with metabolic acidosis and plasma total CO2 (PTCO2) < 22 mM. Because diets in industrialized societies are typically acid-producing, we compared base-producing fruits and vegetables with oral NaHCO3 (HCO3) regarding the primary outcome of follow-up estimated GFR (eGFR) and secondary outcomes of improved metabolic acidosis and reduced urine indices of kidney injury. Individuals with stage 4 (eGFR, 15-29 ml/min per 1.73 m(2)) CKD due to hypertensive nephropathy, had a PTCO2 level < 22 mM, and were receiving angiotensin-converting enzyme inhibition were randomly assigned to 1 year of daily oral NaHCO3 at 1.0 mEq/kg per day (n=35) or fruits and vegetables dosed to reduce dietary acid by half (n=36). Plasma cystatin C-calculated eGFR did not differ at baseline and 1 year between groups. One-year PTCO2 was higher than baseline in the HCO3 group (21.2±1.3 versus 19.5±1.5 mM; P<0.01) and the fruits and vegetables group (19.9±1.7 versus 19.3±1.9 mM; P<0.01), consistent with improved metabolic acidosis, and was higher in the HCO3 than the fruits and vegetable group (P<0.001). One-year urine indices of kidney injury were lower than baseline in both groups. Plasma [K(+)] did not increase in either group. One year of fruits and vegetables or NaHCO3 in individuals with stage 4 CKD yielded eGFR that was not different, was associated with higher-than-baseline PTCO2, and was associated with lower-than-baseline urine indices of kidney injury. The data indicate that fruits and vegetables improve metabolic acidosis and reduce kidney injury in stage 4 CKD without producing hyperkalemia.
                Bookmark

                Author and article information

                Journal
                Medicine (Baltimore)
                Medicine (Baltimore)
                MEDI
                Medicine
                Wolters Kluwer Health
                0025-7974
                1536-5964
                August 2015
                07 August 2015
                : 94
                : 31
                : e1276
                Affiliations
                From the Department of Internal Medicine (TIC, EWK, SKS), NHIS Medical Center, Ilsan Hospital, Goyangshi, Gyeonggi-do; Department of Internal Medicine (HWK, GWR, CHP, JTP, T-HY, S-WK, KHC, DSH, SHH), College of Medicine, Yonsei University, Seoul; and Brain Korea 21 for Medical Science (S-WK), Severance Biomedical Science Institute, Yonsei University, Seoul, Republic of Korea.
                Author notes
                Correspondence: Seung Hyeok Han, Division of Nephrology, Department of Internal Medicine, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-Gu, Soeul, 03722, Republic of Korea (e-mail: hansh@ 123456yuhs.ac ).
                Article
                01276
                10.1097/MD.0000000000001276
                4616581
                26252296
                4c50fb3b-8123-42e3-9ae8-66445e4ea4d9
                Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

                This is an open access article distributed under the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0

                History
                : 23 March 2015
                : 24 May 2015
                : 7 July 2015
                Categories
                5200
                Research Article
                Observational Study
                Custom metadata
                TRUE

                Comments

                Comment on this article