14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Cardiac Resynchronization Therapy Optimization: A Comprehensive Approach

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the first report on biventricular pacing in 1994, cardiac resynchronization therapy (CRT) has become standard for patients with advanced heart failure (HF) and ventricular conduction delay. CRT improves myocardial function by resynchronizing myocardial contraction, which results in reverse left ventricular remodeling and improves symptoms and clinical outcomes. Despite the accelerated development of CRT device technology and its increased application in treating HF patients, almost one-third of these patients do not respond to the therapy or gain any clinical benefit from device implantation. Over the last decade, multiple cardiac imaging modalities have provided a deeper understanding of myocardial pathophysiology, thereby improving HF treatment management. However, the optimal strategy for improving the CRT response remains debatable. This article provides an updated overview of the electropathophysiology of myocardial dysfunction in ventricular conduction delay and the diagnostic approaches involving the use of multiple modalities.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: not found
          • Article: not found

          2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiac 3D Printing and its Future Directions.

            Three-dimensional (3D) printing is at the crossroads of printer and materials engineering, noninvasive diagnostic imaging, computer-aided design, and structural heart intervention. Cardiovascular applications of this technology development include the use of patient-specific 3D models for medical teaching, exploration of valve and vessel function, surgical and catheter-based procedural planning, and early work in designing and refining the latest innovations in percutaneous structural devices. In this review, we discuss the methods and materials being used for 3D printing today. We discuss the basic principles of clinical image segmentation, including coregistration of multiple imaging datasets to create an anatomic model of interest. With applications in congenital heart disease, coronary artery disease, and surgical and catheter-based structural disease, 3D printing is a new tool that is challenging how we image, plan, and carry out cardiovascular interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiopulmonary Exercise Testing: What Is its Value?

              Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.
                Bookmark

                Author and article information

                Journal
                CRD
                Cardiology
                10.1159/issn.0008-6312
                Cardiology
                S. Karger AG
                0008-6312
                1421-9751
                2019
                June 2019
                22 May 2019
                : 142
                : 2
                : 116-128
                Affiliations
                [_a] aCardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
                [_b] bDepartment of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
                Author notes
                *M. Penicka, Cardiovascular Center Aalst, OLV Clinic, Moorselbaan 164, BE–9300 Aalst (Belgium), E-Mail martin.penicka@olvz-aalst.be
                Article
                499192 Cardiology 2019;142:116–127
                10.1159/000499192
                31117077
                4c5c4754-8a30-4c5a-9696-cf0aefba8a49
                © 2019 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 20 December 2018
                : 26 February 2019
                Page count
                Figures: 3, Tables: 2, Pages: 12
                Categories
                HF and Intensive Care: Review Article

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Cardiac resynchronization,Cardiac dyssynchrony,Heart failure,Therapy optimization,Myocardial dysfunction

                Comments

                Comment on this article