15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of ionic size on solvate stability of glyme-based solvate ionic liquids.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A series of binary mixtures composed of glymes (triglyme, G3; tetraglyme, G4; pentaglyme, G5) and alkali-metal bis(trifluoromethanesulfonyl)amide salts (M[TFSA]; M = Li, Na, and K) were prepared, and the correlation between the composition and solvate stability was systematically investigated. Their phase diagrams and Raman spectra suggested complexation of the glymes with M[TFSA] in 1:1 and/or 2:1 molar ratio(s). From isothermal stability measurements, it was found that the formation of structurally stable complexes in the solid state did not necessarily ensure their thermal stability in the liquid state, especially in the case of 2:1 complexes, where uncoordinating or highly exchangeable glyme ligands existed in the molten complexes. The phase-state-dependent Raman spectra also supported the presence of free glymes in certain liquid complexes. The effect of the electric field induced by the alkali-metal cations on the oxidative stability of certain glyme complexes was examined by linear sweep voltammetry and quantum chemical calculations. Although the actual oxidative stability of complexes did not necessarily reflect the calculated HOMO energy levels of the glymes, the strong electric field induced by the smaller M(+) cations and proper coordination structures impart high stability to the glyme complexes. The results of thermogravimetry of complexes with different M(+) cations revealed that a balance of competitive interactions of the M(+) ions with the glymes and [TFSA](-) anions predominates the thermal stability.

          Related collections

          Author and article information

          Journal
          J Phys Chem B
          The journal of physical chemistry. B
          American Chemical Society (ACS)
          1520-5207
          1520-5207
          Jan 29 2015
          : 119
          : 4
          Affiliations
          [1 ] Department of Chemistry and Biotechnology, Yokohama National University , 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
          Article
          10.1021/jp508100s
          25530321
          4c5fb7d9-950b-4a77-ab3b-1736cfb0d547
          History

          Comments

          Comment on this article