44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lymphocytes influence intracranial aneurysm formation and rupture: role of extracellular matrix remodeling and phenotypic modulation of vascular smooth muscle cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Intracranial aneurysms (IA) are increasingly recognized as a disease driven by chronic inflammation. Recent research has identified key mediators and processes underlying IA pathogenesis, but mechanistic understanding remains incomplete. Lymphocytic infiltrates have been demonstrated in patient IA tissue specimens and have also been shown to play an important role in abdominal aortic aneurysms (AAA) and related diseases such as atherosclerosis. However, no study has systematically examined the contribution of lymphocytes in a model of IA.

          Methods

          Lymphocyte-deficient (Rag1) and wild-type (WT; C57BL/6 strain) mice were subjected to a robust IA induction protocol. Rates of IA formation and rupture were measured, and cerebral artery tissue was collected and utilized for histology and gene expression analysis.

          Results

          At 2 weeks, the Rag1 group had significantly fewer IA formations and ruptures than the WT group. Histological analysis of unruptured IA tissue showed robust B and T lymphocyte infiltration in the WT group, while there were no differences in macrophage infiltration, IA diameter, and wall thickness. Significant differences in interleukin-6 (IL-6), matrix metalloproteinases 2 (MMP2) and 9 (MMP9), and smooth muscle myosin heavy chain (MHC) were observed between the groups.

          Conclusions

          Lymphocytes are key contributors to IA pathogenesis and provide a novel target for the prevention of IA progression and rupture in patients.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends.

          To update our 1996 review on the incidence of subarachnoid haemorrhage (SAH) and assess the relation of incidence with region, age, gender and time period. We searched for studies on the incidence of SAH published until October 2005. The overall incidences with corresponding 95% confidence intervals were calculated. We determined the relationship between the incidence of SAH and determinants by means of univariate Poisson regression. We included 51 studies (33 new), describing 58 study populations in 21 countries, observing 45,821,896 person-years. Incidences per 100,000 person-years were 22.7 (95% CI 21.9 to 23.5) in Japan, 19.7 (18.1 to 21.3) in Finland, 4.2 (3.1 to 5.7) in South and Central America, and 9.1 (8.8 to 9.5) in the other regions. With age category 45-55 years as the reference, incidence ratios increased from 0.10 (0.08 to 0.14) for age groups younger than 25 years to 1.61 (1.24 to 2.07) for age groups older than 85 years. The incidence in women was 1.24 (1.09 to 1.42) times higher than in men; this gender difference started at age 55 years and increased thereafter. Between 1950 and 2005, the incidence decreased by 0.6% (1.3% decrease to 0.1% increase) per year. The overall incidence of SAH is approximately 9 per 100,000 person-years. Rates are higher in Japan and Finland and increase with age. The preponderance of women starts only in the sixth decade. The decline in incidence of SAH over the past 45 years is relatively moderate compared with that for stroke in general.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance.

            Here we show that the functional human ortholog of Greatwall protein kinase (Gwl) is the microtubule-associated serine/threonine kinase-like protein, MAST-L. This kinase promotes mitotic entry and maintenance in human cells by inhibiting protein phosphatase 2A (PP2A), a phosphatase that dephosphorylates cyclin B-Cdc2 substrates. The complete depletion of Gwl by siRNA arrests human cells in G2. When the levels of this kinase are only partially depleted, however, cells enter into mitosis with multiple defects and fail to inactivate the spindle assembly checkpoint (SAC). The ability of cells to remain arrested in mitosis by the SAC appears to be directly proportional to the amount of Gwl remaining. Thus, when Gwl is only slightly reduced, cells arrest at prometaphase. More complete depletion correlates with the premature dephosphorylation of cyclin B-Cdc2 substrates, inactivation of the SAC, and subsequent exit from mitosis with severe cytokinesis defects. These phenotypes appear to be mediated by PP2A, as they could be rescued by either a double Gwl/PP2A knockdown or by the inhibition of this phosphatase with okadaic acid. These results suggest that the balance between cyclin B-Cdc2 and PP2A must be tightly regulated for correct mitotic entry and exit and that Gwl is crucial for mediating this regulation in somatic human cells.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Cerebral aneurysms.

                Bookmark

                Author and article information

                Contributors
                dsawyer1@tulane.edu
                lpace@tulane.edu
                cpascal@tulane.edu
                akutchin@tulane.edu
                boneill2@tulane.edu
                bobby.starke@gmail.com
                adumont2@tulane.edu
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                14 July 2016
                14 July 2016
                2016
                : 13
                : 185
                Affiliations
                [ ]Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 131 S. Robertson St. Ste. 1300, 8047, New Orleans, LA 70112 USA
                [ ]Department of Neurosurgery, University of Miami, Miami, FL USA
                Article
                654
                10.1186/s12974-016-0654-z
                4946206
                27416931
                4c62786c-9f0d-4ce6-80ba-f86cb3b5358e
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 March 2016
                : 6 July 2016
                Funding
                Funded by: FundRef http://dx.doi.org/http://dx.doi.org/10.13039/100007875, Tulane University;
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Neurosciences
                leukocyte,interleukin-6,inflammation,cerebral aneurysm,subarachnoid hemorrhage,matrix metalloproteinase 2,matrix metalloproteinase 9,myosin heavy chain,rag1 mice

                Comments

                Comment on this article